

Results of the ARAcaITA experiment:

measurement of the coherent radio emission from an electron excess in ice.

R. Gaïor^{*a*}, A. Ishihara^{*a*}, T. Kuwabara^{*a*}, K. Mase^{**a*}, M. Relich^{*a*}, S. Ueyama^{*a*} S. Yoshida^{*a*} for the ARA collaboration, M. Fukushima^{*b*}, D. Ikeda^{*b*}, J. N. Matthews^{*c*}, H. Sagawa^{*b*}, T. Shibata^{*d*}, B. K. Shin^{*e*} and G. B. Thomson^{*c*}

^a Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

^b ICRR, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8522, Japan

- ^c Physics And Astronomy, University of Utah, 201 South, Salt Lake City, UT 84112, U.S.
- ^d High Energy Accelerator Research Organization (KEK), 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan

 ^e Department of Physics, Hanyang University, 222 Wangsimni-ro Seongdung-gu Seoul, 133-791, Korea

Chiba University

Introduction

ARA

- High Energy Neutrino (E> 100PeV) radio detector
- Collects the radio emission from
- charge excess in ice
- Never observed insitu

Askaryan radiation experiments in lab

Several beam experiment were carried out since 2000.

- 2000 Salzberg *et al.* First observation in silica sand (Phys. Rev. Lett. 86, 2802)
- 2005 Gorham et al. Observation in rock salt (Phys. Rev. D 72, 023002)
- 2007 Gorham et al. Observation in ice (Phys. Rev. Lett. 99, 171101)
- 2015 Belov et al. Observation with B field (arXiv:1507.07296 [astro-ph.IM])

ARAcaITA

Setup

Source: 40MeV Telescope Array Electron light source

+ block of ice $(1m \times 0.3m \times 0.3m)$

Detector: ARA antenna (Vpol)

+ Low noise ampli. + filter + fast sampling osci

Data taking

15 days in Delta Utah (TA site) ~7 days of beam in January 2015 <u>Different runs:</u>

- with ice target
- without target
- only plastic box

Goals

- Confirm the intensity of Askaryan radiation

- Check our signal simulation method
 - Check our detector response

ARAcaITA

Target

- ice target (kept a low temp.)
- plastic structure
- target angle adjustable
- target removable

Detector

- 2 polarization antenna on a pole
- pole height adjustable up to 7m above the beam exit
- Filter (230-430MHz) and LNA at the exit of the antenna
- ~40m cable to DAQ

Beam configuration

Results: Polarization/Coherence /Intensity

- Very polarized signal in all cases (ice target and no target) (expected for a field from the beam or electron shower)
- Charge dependence of the radio signal: almost fully coherent
- Signal with ice target at least 2 times larger than without
- No specific background from plastic box

Simulations

ations chain

JD

8

3. Detector simulation:

antenna: Time domain simulation <u>electronics</u>: frequency spectrum measurement

2. Radio simulation: ZHS based computes the potential vector for electron tracks

 \rightarrow E field by time derivation

validation: emit a pulse with an antenna and measure it with our detector $\rightarrow \Delta P/P < 15\%$

R.Gaïor TeVPa Oct2015

Simulation with target

Ice target: simulate a big block of ice

Simulation configuration:

- Simplified: only ice environment (neglect air contribution and Transition radiation)

- Refraction accounted afterwards

Comparison with data

- large discrepancy in absolute value
- different angular dependence
- → Other emission process dominate

ing improvement

source of E field = change of potential vector

- from beam appearance point
- change of index

e

shower development

tion \rightarrow make our simulation more detailed:

Simulation of field source:

Implement the real geometry Account for air contribution through ice and for reflected ray

- \rightarrow Other process included (esp. transition radiation)
- → should increase the absolute scale

Other effects studied:

- diffraction from ice
- (size of ice block comparable to λ)
- Index of refraction of the ice
- \rightarrow can modify the angular dependence

Simulation with no target

11

beam appearance point

Comparison with theory

Comparison with data

No target run: Comparison with other experiments

TA LINAC used for several radio experiment

- TA Radar: Radar for UHECR detection (~50MHz)
- Brussels IceCube group: Radar on plasma in ice for v detection (~2-3GHz)
- Konan University: Molecular Bremsstrahlung (12GHz)

Conclusions

Observation of coherent radiation from electron at UHF

- Set of data for different configuration:
 - no target ice block background check
- Highly polarized an coherent radio signal observed
 - -> emission from electron beam and shower
- Signal observed with ice larger than no target measurement

Comparison with simulation

- Askaryan component seems lower than dominant background
- No target run has already a shift in absolute scale:
 - detector simulation checked
 - comparison with theory checked

Complementary studies

- No target runs compared with other radio experiment
 - → important for their background understanding
- Ice target run: possibly data of transition radiation at UHF
 - → radiation studied for the detection of neutrino shower (http://arxiv.org/pdf/1509.01584v1.pdf)

Detector simulations

15

Antenna: Time domain simulation with XFDTD software (method in <u>http://www.farr-research.com/biblio.html</u> (note 555))

Electronics: Based on measured gain/phase

Detector simulation validation

ARAcalTA: main runs

- physics: nominal configuration i.e. block of ice (ice angle 30, 45, 60 deg.)
- background: replace target by nothing, just plastic case, thin layer of ice...
- calibration: use bicone antenna and scan height, beam monitoring
- interference test: vertical and horizontal antenna

ZHS

$$\vec{A}_{seg} = \frac{e}{4\pi Rc} \frac{-[\hat{u} \times (\hat{u} \times \vec{\beta})]}{1 - n\vec{\beta} \cdot \hat{u}}$$

For each segment vector potential is computed

End point method

For each point +/- E field is computed

source time = obs time

Simulation

- the inner structure due to subbunches are wash out by the beam spread)
- Absolute timing (w.r.t. to emission time)
- Similar signal to what is expected in ARA

- Dependance of the signal with beam spread

- realistic beam profile reduce the total expected field

Source and Target

Installed in a plastic box 1m above the beam exit

can be inclined to choose the exit angle of radio wave

 Due to refraction, angle of target will give the accessible emission angle in ice

Source: TA LINAC

source of 40 MeV electron
maximum of 10⁹ particles/s
bunch of few ns long divided in sub bunches
(every 350 ps)
bunch length can be changed

Electron beam 350 ps

Prior Detector calibration

Antenna simulation

- Pattern simulation + VSWR
- Time domain solver XFDTD
- Work on time domain response simulation (account for the antenna phase response)

Antenna calibration

- pattern measurement in Anechoic chamber

Simulation

response to simulated pulse

Results: ARA antenna

5

measured (made in Japan)

measured (made in Taiwan)

simulated

0.015

0.010

h_N [a.u.]

measured (made in Chiba)

measured (made in Taiwan)

simulated

