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Non-Sterile EW scale νR model (Minimal Version)

• Gauge Group - Same as Standard Model

• Leptons

• Quarks

• Higgses (With Custodial Symmetry)

PPP11

Overview

Minimal EW �R Model

Model Content

Leptons

lL =

�
�L
eL

⇥
�⇥ lMR =

�
�R
eMR

⇥
,

eR �⇥ eML

Quarks

qL =

�
uL
dL

⇥
�⇥ qMR =

�
uMR
dM
R

⇥
,

uR , dR �⇥ uML , dM
L

Mirror particles are totally di�erent from the SM particles!
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Overview

Minimal EW �R Model

� parameter at the tree level

In order to restore Custodial global SU(2) symmetry (⇥ = 1) at
three level (Chanowitz, Golden and Georgi, Machacek), we add

� = (3,Y /2 = 0)

and group it with ⌅̃ = (3, Y /2 = 1) in

⌅ =

⇤

⇧
⌅0 �+ ⌅++

⌅� �0 �+

⌅�� �� ⌅0⇥

⌅

⌃ (5)

The doublet Higgs can be written as

� =

�
⇤0⇥ ⇤+

⇤� ⇤0

⇥
(6)

PPP11

Overview

Minimal EW �R Model

� parameter at the tree level

In order to restore Custodial global SU(2) symmetry (⇥ = 1) at
three level (Chanowitz, Golden and Georgi, Machacek), we add

� = (3,Y /2 = 0)

and group it with ⌅̃ = (3, Y /2 = 1) in

⌅ =

⇤

⇧
⌅0 �+ ⌅++

⌅� �0 �+

⌅�� �� ⌅0⇥

⌅

⌃ (5)

The doublet Higgs can be written as

� =

�
⇤0⇥ ⇤+

⇤� ⇤0

⇥
(6)

PPP11

Overview

Minimal EW �R Model

Dirac mass

The singlet scalar field ⇥S couples to fermion bilinear.

LS = gSl l̄L ⇥S lMR + h.c. (2)

= gSl�̄L ⇥S �R + ...+ h.c.

⇥S (1, Y /2 = 0)

From (2), Dirac mass: mD
� = gSlvS where �⇥S⇥ = vS .
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Introduction

Georgi-Machacek
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• Motivation of  the original model
- LFV processes to probe for new physics 
(SM contributions are minuscule!)
- Parity Restoration (at high energies)
- Non-perturbative (Lattice) formulation of  SM 
  (e.g. to study 1st Phase Transition etc) 
- Left mirrors Right (fermions)

- Electroweak scale non-sterile νR 
  (‘Testable’ Seesaw Mechanism) 
- Embed-able into GUT like E6

• Two Extensions
- Mirror Higgs doublet was introduced to accommodate the 125 
GeV scalar resonance observed at LHC 
[Hoang, Hung, Kamat, 1412.0343]

- Introduce a A4 triplet of  scalar singlets {φSi} to account for lepton 
mixing effects [Hung and Le, 1501.02538]

Motivations
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Neutrino Masses in EW scale νR Model

• Dirac Mass from Singlet

LM = gM lM,T
R ⇥2⇤2⌅̃ lMR

= gM�TR⇥2�R⌅
0 + · · ·

⇤ MR�
T
R⇥2�R + · · ·

with MR = gM ⌅⌅0⇧ = gMvM� MZ/2 ⇥ 46GeV

• Majorana Mass from Triplet

• Light Neutrinos (See-Saw)

m� =
M2

D

MR
< O(eV)

If gSl � O(1), then vS � O(105�6 eV);

If gSl � O(10�6), then vS � O(�EW � 246GeV).

�
m� < 0.23 eV [Planck 2015]

(As opposed to GUT scale!)

(Not necessarily related to EW scale!)

LS = gSllL⇥Sl
M
R +H.c.

= gSl�L⇥S�R + · · ·+H.c.

� MD�L�R + · · ·+H.c.

with MD = gSl⇥⇥S⇤ = gSlvS
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Further Extension: A4 Model of  Neutrino Masses

• Recently, the minimal model has been extended to include a A4 
symmetry in the neutrino sector (Hung & Le, arXiv:1501.02538).

• Instead of  one, four Higgs singlets were introduced.

HEP Seminar

Model of neutrino masses

Model of neutrino masses

Assignments of the model’s content

Field (⇥, l)L (⇥, lM )R eR eML ⇤�S ⇤̃S �⇥

A4 3 3 3 3 1 3 1

Notice: An extension to four Higgs singlet fields.• A4 multiplication rule

• Three Yukawa couplings are now possible for the neutrino Dirac mass 

where g1S and g2S terms are the two possible ways that the triplet singlet 
couples to the product of  lepton doublet and mirror lepton doublet. 
However (g2S)*

 = g1S from lepton mass reality! 

• Similar Yukawa couplings for right-handed SM singlets can be written down 
with three new Yukawa couplings g′0S, g′1S, and g′2S. 

3 1� 333

HEP Seminar

Model of neutrino masses

Neutrino Dirac mass

The Yukawa interactions

LS = l̄L (g�S��S + g⇥S�̃S + g⇤S�̃S) l
M
R + h.c. (8)

3⇥ ( 1 3 3 ) 3

where g⇥S and g⇤S reflect the two di�erent ways that �̃S couples
to the product of l̄L and lMR .

Multiplication rule9

3� 3 = 1(11 + 22 + 33) + 1�(11 + ⇥222 + ⇥33) + 1��(11 + ⇥22 + ⇥233)

+ 3(23, 31, 12) + 3(32, 13, 21)

9Ernest Ma, 2007

( )

LS = �l0L

�
g0S�0S + g1S�̃S + g2S�̃S

⇥
lM,0
R +H.c.
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More Details of  the Extension - I

• From the A4 multiplication rules, we have

LS = �l0L

�
g0S�0S + g1S�̃S + g2S�̃S

⇥
lM,0
R +H.c.

= �l0LM�l
M,0
R +H.c.

UPMNS = U †
�U

l
L . (8)

Under A4, (�, l)L, (�, lM)R, eR and eML transform as 3, where e and � are generic

notations for the charged and neutral leptons. Using the A4 multiplication rule

3⇥ 3 = 1(11+22+33)+ 1⇥(11+⇤222+⇤33)+ 1⇥⇥(11+⇤22+⇤233)+ 3(23, 31, 12)+

3(32, 13, 21) with ⇤ = ei2⇥/3, it was argued in [7] that the appropriate set of singlet

scalars is composed of an A4 singlet ⇥0S and an A4-triplet {⇥iS} (i = 1, 2, 3). To

reflect the two di�erent ways that the A4-triplet can couple to the leptons, [7] wrote

down the Lagrangian

LS = �l̄0L (g0S⇥0S + g1S⇥̃S + g2S⇥̃S) l
M,0
R +H.c. , (9)

where l0L and lM,0
R are gauge eigenstates which are related to the mass eigenstates by

l0L = U l
LlL , lM,0

R = U lM

R lMR . (10)

Using the aforementioned multiplication rule, one obtains the following matrix

M⇤ =

�

⇧⇧⇧⇤

g0S⇥0S g1S⇥3S g2S⇥2S

g2S⇥3S g0S⇥0S g1S⇥1S

g1S⇥2S g2S⇥1S g0S⇥0S

⇥

⌃⌃⌃⌅
. (11)

As shown in [7], reality of neutrino Dirac masses implies that

g2S = g�1S . (12)

Furthermore, it was shown that, with v0 = ⇤⇥0S⌅ and vi = ⇤⇥iS⌅ = v, the neutrino

mass matrix

MD
� =

�

⇧⇧⇧⇤

g0Sv0 g1Sv3 g2Sv2

g2Sv3 g0Sv0 g1Sv1

g1Sv2 g2Sv1 g0Sv0

⇥

⌃⌃⌃⌅
, (13)

13

where

• Using                                             , we diagonalizev0 = ��0S⇥, vi = ��iS⇥ = v

p
r
o
o
f
s
 
J
H
E
P
_
1
2
9
P
_
0
4
1
5

Field (ν, l)L (ν, lM )R eR eML φS φ̃S Φ

A4 3 3 3 3 1 3 1

Table 1. A4 assignments for leptons and Higgs fields.

4.1 Neutrino Dirac mass matrix

As shown in [11–15], the neutrino Dirac mass in the EW νR model comes from the generic

Yukawa term gSl l̄L φS lMR +H.c. (2.1). With the A4 assignments shown in table 1, we can

write the following Yukawa interactions

LS = l̄L (g0Sφ0S + g1Sφ̃S + g2Sφ̃S) l
M
R +H.c. , (4.6)

where g1S and g2S reflect the two different ways that φ̃S couples to the product of l̄L and

lMR as shown in eq. (4.3). We obtain the following neutrino Dirac mass matrix:

MD
ν =




g0Sv0 g1Sv3 g2Sv2
g2Sv3 g0Sv0 g1Sv1
g1Sv2 g2Sv1 g0Sv0



 , (4.7)

where v0 = 〈φ0S〉 and vi = 〈φiS〉 with ı = 1, 2, 3. Notice that this form of MD
ν is the same

as the one used by [27–29] for the charged lepton mass matrix.

When v1 = v2 = v3 = v, MD
ν can be diagonalized as follows (using 1+ω+ω2 = 0 and

ω2 = ω∗)

U †
νM

D
ν Uν =




m1D 0 0

0 m2D 0

0 0 m3D



 , (4.8)

where

Uν =
1√
3




1 1 1

1 ω2 ω

1 ω ω2



 . (4.9)

Notice that our Uν defined in eq. (4.9) is just Uν = U †
CW . At this point, we would like

to establish our notations for what will follow. Notice that, in general, a mass matrix is

diagonalized by two unitary matrices UL and UR i.e.

U †
LMUR = MD , (4.10)

where MD is a diagonal mass matrix. A mass term of the form f̄0
LMf0

R can be rewritten

as f̄0
LULU

†
LMURU

†
Rf

0
R = f̄LMDfR where f̄0

LUL = f̄L and U †
Rf

0
R = fR.

From eq. (4.8), it is clear that

UνL = UνR = Uν . (4.11)

A remark is in order at this point. As we will see below, UPMNS is defined as UPMNS =

U †
νLUlL = U †

νUlL. What UlL might be will be the subject of the section on the charged

lepton mass matrix.

– 9 –
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MD
�

Cabibbo (1978), 
Wolfenstein (1978)

U� = U †
CW � = e2�i/3

U�L = U�R = U�

For charged lepton mixing!
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More Details of  the Extension - II
• In the mass eigenstates,                               

the interaction becomes

can be diagonalized, i.e. U †
�M

D
� U� , by the matrix

U� =
1⌅
3

�

⇧⇧⇧⇤

1 1 1

1 �2 �

1 � �2

⇥

⌃⌃⌃⌅
. (14)

Notice that U� ⇥ U †
CW . Eqs. (14) and (11) will form a basis for our subsequent

discussion.

For the purpose of the subsequent sections, we rewrite Eq. (9) as follows

LS = �l̄L U
l†
LU�U

†
�M⇥U�U

†
�U

lM

R lMR +H.c. (15)

= �l̄L U
†
PMNS M̃⇥ U

M
PMNSl

M
R +H.c. , (16)

where

M̃⇥ = U †
�M⇥U� , (17)

and

UM
PMNS = U †

�U
lM

R . (18)

The above construction can be straightforwardly generalized for the right-handed

leptons and left-handed mirror leptons. Hence the total LS becomes

LS = �l̄L U
†
PMNS M̃⇥ U

M
PMNSl

M
R � l̄R U ⇥†

PMNS M̃
⇥
⇥ U

⇥M
PMNSl

M
L +H.c. (19)

where M̃ ⇥
⇥ = U †

�M
⇥
⇥U� and M ⇥

⇥ is the same as M⇥ given by Eq. (11) with g0S ⇤ g⇥0S,

g1S ⇤ g⇥1S and g2S ⇤ g⇥2S. Reality of the eigenvalues of M ⇥
⇥ also implies g⇥2S = g⇥�1S.

In analogous to UPMNS and UM
PMNS, we have defined the following mixing matrices

for the second term of Eq. (19)

U ⇥
PMNS = U †

�U
l
R , (20)

and

U ⇥M
PMNS = U †

�U
lM

L , (21)

14

UPMNS = U †
�U

l
L . (8)

Under A4, (�, l)L, (�, lM)R, eR and eML transform as 3, where e and � are generic

notations for the charged and neutral leptons. Using the A4 multiplication rule

3⇥ 3 = 1(11+22+33)+ 1⇥(11+⇤222+⇤33)+ 1⇥⇥(11+⇤22+⇤233)+ 3(23, 31, 12)+

3(32, 13, 21) with ⇤ = ei2⇥/3, it was argued in [7] that the appropriate set of singlet

scalars is composed of an A4 singlet ⇥0S and an A4-triplet {⇥iS} (i = 1, 2, 3). To

reflect the two di�erent ways that the A4-triplet can couple to the leptons, [7] wrote

down the Lagrangian

LS = �l̄0L (g0S⇥0S + g1S⇥̃S + g2S⇥̃S) l
M,0
R +H.c. , (9)

where l0L and lM,0
R are gauge eigenstates which are related to the mass eigenstates by

l0L = U l
LlL , lM,0

R = U lM

R lMR . (10)

Using the aforementioned multiplication rule, one obtains the following matrix

M⇤ =

�

⇧⇧⇧⇤

g0S⇥0S g1S⇥3S g2S⇥2S

g2S⇥3S g0S⇥0S g1S⇥1S

g1S⇥2S g2S⇥1S g0S⇥0S

⇥

⌃⌃⌃⌅
. (11)

As shown in [7], reality of neutrino Dirac masses implies that

g2S = g�1S . (12)

Furthermore, it was shown that, with v0 = ⇤⇥0S⌅ and vi = ⇤⇥iS⌅ = v, the neutrino
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MD
� =

�

⇧⇧⇧⇤
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3⇥ 3 = 1(11+22+33)+ 1⇥(11+⇤222+⇤33)+ 1⇥⇥(11+⇤22+⇤233)+ 3(23, 31, 12)+
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scalars is composed of an A4 singlet ⇥0S and an A4-triplet {⇥iS} (i = 1, 2, 3). To

reflect the two di�erent ways that the A4-triplet can couple to the leptons, [7] wrote

down the Lagrangian
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� =

�
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g1Sv2 g2Sv1 g0Sv0

⇥

⌃⌃⌃⌅
, (13)
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where U l
R and U lM

L are the unitary matrices relating the gauge eigenstates and the

mass eigenstates

l0R = U l
RlR , lM,0

L = U lM

L lML . (22)

li lj

�

lMm lMm

⇥kS

FIG. 3. One-loop induced Feynman diagram for li ⇥ lj� in EW-scale ⇥R model.

V. THE CALCULATION

The one-loop irreducible diagram for li ⇥ lj� is shown in Fig. (3). Other two

diagrams not shown are reducible associated with the one-loop dressing for the ex-

ternal fermion lines. They are crucial for the cancellation of ultraviolet divergences

and gauge invariance in our calculation. The relevant Yukawa couplings between

the leptons, mirror leptons and the A4 singlet and triplet scalars can be deduced by

recasting the Lagrangian LS in Eq. (19) into the following component form

LS = �
3⇤

k=0

3⇤

i,m=1

�
l̄Li ULk

im lMRm + l̄Ri URk
im lMLm

⇥
⇥kS +H.c. (23)
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14

M �
� same as M� with g0S � g�0S , g1S � g�1S , g2S � g�2S .

1 1

= �
�

i,m,k

(ULk
im lLi�kSl

M
Rm + URk

im lRi�kSl
M
Lm) + H.c.

	�������
������



The Mixing Matrices UL & UR

• Mk is given by

where Fµ� is the electromagnetic field strength and the coe�cient df the electric

dipole moment. The electric dipole moment for lepton li can also be easily extracted

from the above calculation with the result

dli =
i

2

�
C ii

L � C ii
R

⇥
,

= +
e

16�2

�

m

1

mlMm

Im
�
UL
im

�
UR
im

⇥�⇥J
⇧
m2

⇥S

m2
lMm

⌃
. (13)

D. Generalization to the Extended EW �R Model

The above results can be generalized to the extended mirror model with A4 sym-

metry [4], in which 4 scalar singlets ⇥S0 (singlet under A4) and ⇥Sk(k = 1, 2, 3)

(triplet of A4) are introduced.

The Yukawa interaction can be cast into the following form

LA4
Charged,S = �

3�

k=0

3�

i,m=1

�
lLi ULk

im lMRm + lRi URk
im lMLm

⇥
⇥Sk +H.c. (14)

or in matrix notation,

LA4
Charged,S = �

�
lL
�
UL 0,UL 1,UL 2,UL 3

⇥
lMR + lR

�
UR 0,UR 1,UR 2,UR 3

⇥
lML
⇥
·

⌥

↵↵↵↵↵ 

⇥S0

⇥S1

⇥S2

⇥S3

�

�����⌦

+ H.c. (15)

where

ULk
im =

3�

j,n=1

⇤�
U l
L

⇥† · U�

⌅

ij
Mk

jn

⇤
U †
� · U lM

R

⌅

nm
, (16)

⇥
3�

j,n=1

⇤
U †
PMNS

⌅

ij
Mk

jn

⇤
U lM

PMNS

⌅

nm
, (17)

=
⇤
U †
PMNS ·Mk · U lM

PMNS

⌅

im
, (18)

4
and

URk
im =

3⇧

j,n=1

⇤�
U l
R

⇥† · U�

⌅

ij
M ⇥ k

jn

⇤
U †
� · U lM

L

⌅

nm
, (19)

�
3⇧

j,n=1

⇤
U ⇥ †
PMNS

⌅

ij
M ⇥ k

jn

⇤
U ⇥ lM
PMNS

⌅

nm
, (20)

=
⇤
U ⇥ †
PMNS ·M ⇥ k · U ⇥ lM

PMNS

⌅

im
. (21)

The matrix elements for the eight matrices Mk(k = 0, 1, 2, 3) and M ⇥ k(k = 0, 1, 2, 3)

are listed as below

M0
11 = M0

22 = M0
33 = g0S , (22)

M1
11 = M2

11 = M3
11 =

2

3
Re (g1S) , (23)

M1
22 = M2

22 = M3
22 =

2

3
Re (��g1S) , (24)

M1
33 = M2

33 = M3
33 =

2

3
Re (�g1S) , (25)

M0
12 = M0

13 = M0
21 = M0

23 = M0
31 = M0

32 = 0 , (26)

M1
12 = M1

21 =
2

3
Re (�g1S) , (27)

M2
12 = M3

21 =
1

3
(g1S + �g�1S) , (28)

M3
12 = M2

21 =
1

3
(g�1S + ��g1S) , (29)

M1
13 = M1

31 =
2

3
Re (��g1S) , (30)

M2
13 = M3

31 =
1

3
(g1S + ��g�1S) , (31)

M3
13 = M2

31 =
1

3
(g�1S + �g1S) , (32)

5

• M′k can be obtained from Mk with g0S → g′0S 
and g1S → g′1S

U� = U†
CW =

1�
3

�

⇤
1 1 1
1 �2 �
1 � �2

⇥

⌅

� = e2�i/3

Contains 
information 
about A4 
symmetry 
in the 
neutrino 
sector

TABLE I. Matrix elements for Mk(k = 0, 1, 2, 3).

Mk
jn Value

M0
12,M

0
13,M

0
21,M

0
23,M

0
31,M

0
32 0

M0
11,M

0
22,M

0
33 g0S

M1
11,M

2
11,M

3
11

2
3Re (g1S)

M1
22,M

2
22,M

3
22

2
3Re (�

�g1S)

M1
33,M

2
33,M

3
33

2
3Re (�g1S)

M1
12,M

1
21

2
3Re (�g1S)

M2
12,M

3
21

1
3 (g1S + �g�1S)

M3
12,M

2
21

1
3 (g

�
1S + ��g1S)

M1
13,M

1
31

2
3Re (�

�g1S)

M2
13,M

3
31

1
3 (g1S + ��g�1S)

M3
13,M

2
31

1
3 (g

�
1S + �g1S)

M1
23,M

1
32

2
3Re (g1S)

M2
23,M

3
32

2��

3 Re (g1S)

M3
23,M

2
32

2�
3 Re (g1S)
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UPMNS

• Standard Parameterization

TABLE I. Mixing parameters from global three-neutrino oscillation data taken from [5, 6].

Mixing Parameters Normal Hierarchy Inverted Hierarchy

sin2 ⇥12 0.308± 0.017 0.308± 0.017

sin2 ⇥23 0.437+0.033
�0.023 0.455+0.139

�0.031

sin2 ⇥13 0.0234+0.0020
�0.0019 0.024+0.0019

�0.0022

�/⇤ 1.39+0.38
�0.27 1.31+0.29

�0.33

�m2 = m2
2 �m2

1 (7.54+0.26
�0.22)⇥ 10�5eV2 (7.54+0.26

�0.22)⇥ 10�5eV2

�m2 = |m2
3 � (m2

1 +m2
2)/2| (2.43± 0.06)⇥ 10�3eV2 (2.38± 0.06)⇥ 10�3eV2

The magnetic dipole moment anomaly for lepton li is then

�ali =
2mli

e

⇧
C ii

L + C ii
R

2

⌃

= +
1

16�2

 
3⌘

k=0

3⌘

m=1

2
�
|ULk

im |2 + |URk
im |2

⇥ m2
li

m2
lMm

I
⌥
m2

⇥Sk

m2
lMm

�

+
3⌘

k=0

3⌘

m=1

Re
⇤
ULk
im

�
URk
im

⇥⇥⌅ mli

mlMm

J
⌥
m2

⇥Sk

m2
lMm

�⌦
. (39)

The electric dipole moment for lepton li is then

dli =
i

2

�
C ii

L � C ii
R

⇥
,

= +
e

16�2

3⌘

k=0

3⌘

m=1

1

mlMm

Im
⇤
ULk
im

�
URk
im

⇥⇥⌅J
⌥
m2

⇥Sk

m2
lMm

�
. (40)

III. ANALYSIS

Recall that the standard parameterization of the PMNS matrix is given by

UPMNS =

↵

✏✏✏�

c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

�

⇣⇣⇣�
· P (41)
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FIG. 1. Contour plots of Log10B(µ ⇥ e�) (left) and Log10�aµ (right) on the (g0S ,M)

plane for normal hierarchy. We assume g0S = g1S = g�0S = g�1S and they are all real; all

the mirror lepton masses are assumed to be degenerate with a common mass M .

where sij � sin �ij, cij � cos �ij, and P is the Majorana phase matrix

�

⇧⇧⇧⇤

1 0 0

0 ei�21/2 0

0 0 ei�31/2

⇥

⌃⌃⌃⌅
. (42)

We will ignore the Majorana phases in this analysis.

In Table III we list the 1⇥ range of the mixing parameters as given by the recent

analysis of global three-neutrino oscillation data in [5, 6]. With the central values for

the mixing parameters given in Table III as inputs, we obtain two possible solutions
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FIG. 2. Contour plots of Log10B(µ ⇥ e�) (left) and Log10�aµ (right) on the (g0S ,M)

plane for inverted hierarchy. We assume g0S = g1S = g�0S = g�1S and they are all real; all

the mirror lepton masses are assumed to be degenerate with a common mass M .
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Calculations

• Early calculation of  μ→eγ and τ→μγ in the minimal 
model was done back in 2008 [PQ Hung, PLB 659 
(2008)].

• Here we perform an updated analysis in the extended 
model with A4 symmetry.

• Current Limit (April, 2013)

B(μ+→e+γ) ≦5.7×10−13 (90%CL)

• MEG-II Short Term Upgrade
Engineering Run - End of  2015
Physics Run - 2016

• Expected upper limit 4×10−14 
- an order of  magnitude improvement!

2 The quest for µ+ ⇤ e+� with the MEG experiment

The MEG experiment [2], at the Paul Scherrer Institut (PSI, Switzerland), exploits the most
intense continuous muon beam in the world (up to 108 muons per second) to search for the
µ+ ⇤ e+� decay. Positive muons are stopped in a thin plastic target, and hence the signature
of the µ+ ⇤ e+� decay is given by a positron and a photon, monochromatic (⇥ 52.8 MeV),
emitted at the same time, and back-to-back. Although a prompt background is given by the
radiative µ ⇤ e⇥⇥� decay, the largely dominant background, when operating with with very
high muon beam intensity, is given by the accidental coincidence of a positron from a muon
decay with a photon from another muon decay (radiative decay or annihilation in flight of the
positron). The background rate is then proportional to the square of the muon rate, making
useless a further increase of the muon rate as soon as the background expected in the signal
region becomes relevant. For this reason, the MEG experiment is operated with ⇥ 3 � 107

muons per second, which is found to be an optimal value for our setup.

Figure 1: The MEG detector.

The MEG detector is shown in Figure 1. Positron are reconstructed in MEG by a system of
16 planar drift chamber in a gradient magnetic field, with its main component along the beam
axis, and a system of 30 scintillating bars for timing and trigger. The gradient magnetic field is
necessary to prevent tracks emitted at almost 90 degrees with respect to the beam axis to make
several turns within the spectrometer before exiting the detector. The drift chambers reached a
resolution of ⇥ 300 µm in the radial direction and ⇥ 1 mm along the beam axis, resulting into
a core momentum resolution of ⇥ 330 keV and angular resolutions of ⇥ 10 mrad. The timing
counter allows to measure the positron time with a resolution of ⇥ 70 ps. The overall positron
e�ciency is ⇥ 30%, and it is largely dominated by the loss of positrons in the path from the
drift chamber system to the timing counter.

Photons are reconstructed by a liquid Xenon detector instrumented with 856 PMTs. It
measures the energy, the time and the conversion point of the photon, with resolutions of
⇥ 900 keV in the bulk region of the detector, 70 ps and � 6 mm.

The decay vertex is defined by the intersection of the positron track with the target, while
the direction from the vertex to the photon conversion point is taken as the photon direction
to determine the relative e� angle.

Electronic waveforms from all detectors are fully digitized at GS/s rates thanks to the DRS4
chip developed at PSI. A fully digital trigger system has been developed, exploiting energy, time
and position measurements in the Xenon detector and time measurement in the timing counter.

2 PANIC14
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The Invariant Amplitude

• I and J (Ignoring mi and mj)

• UL and UR mix different families of  charged 

leptons with those of  the mirror leptons (see 
below)

M(l�i (p) � l�j (p
⇤)�(q)) = ūj(p

⇤)i⇤µ�q� [C
ij
L L+ Cij

RR]ui(p)⇥
⇥
µ(q)

M1
23 = M1

32 =
2

3
Re (g1S) , (33)

M2
23 = M3

32 =
2⇤�

3
Re (g1S) , (34)

M3
23 = M2

32 =
2⇤

3
Re (g1S) , (35)

and M ⇥ k
jn can be obtained from Mk

jn with the complex couplings g0S ⇥ g⇥0S and

g1S ⇥ g⇥1S.

The results obtained in the previous section can now be translated easily to the

extended model simply by the following substitutions

(1) UL
im and UR

im by ULk
im and URk

im respectively,

(2) m2
�S

by m2
�Sk

, and

(3) summing over both m (mirror leptons) and k (Higgs singlets).

Thus Eqs.(5) and (6) become

C ij
L = +

e

16⇥2

3⌥

k=0

3⌥

m=1

⇧
1

m2
lMm

�
miURk

jm

�
URk
im

⇥�
+mjULk

jm

�
ULk
im

⇥� I
⇤
m2

�Sk

m2
lMm

⌅

+
1

mlMm

URk
jm

�
ULk
im

⇥� J
⇤
m2

�Sk

m2
lMm

⌅⌃
, (36)

C ij
R = +

e

16⇥2

3⌥

k=0

3⌥

m=1

⇧
1

m2
lMm

�
miULk

jm

�
ULk
im

⇥�
+mjURk

jm

�
URk
im

⇥� I
⇤
m2

�Sk

m2
lMm

⌅

+
1

mlMm

ULk
jm

�
URk
im

⇥� J
⇤
m2

�Sk

m2
lMm

⌅⌃
. (37)

The partial width for li ⇥ lj� is given by (Eq.(9))

� (li ⇥ lj�) =
1

16⇥
m3

li

⇤
1�

m2
lj

m2
li

⌅3 �
|C ij

L |2 + |C ij
R |2

⇥
. (38)
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The functions I(r) and J (r) are defined by

I(r) = 1

12(1� r)4
⇤
�6r2 log r + r(2r2 + 3r � 6) + 1

⌅
, (7)

J (r) =
1

2(1� r)3
⇤
�2r2 log r + r(3r � 4) + 1

⌅
. (8)

The partial width is

� (li ⇥ lj�) =
1

16⇤
m3

li

⌥
1�

m2
lj

m2
li

�3 �
|C ij

L |2 + |C ij
R |2
⇥

. (9)

For normalization, we also present the tree level width for l�i ⇥ l�j ⇥i⇥̄j in the

standard model

�
�
l�i ⇥ l�j ⇥i⇥̄j

⇥
=

G2
Fli
m5

li

192⇤3
F
⌥
m2

lj

m2
lj

�
, (10)

where F(r) = 1� 8r + 8r3 � r4 � 12r2 log r.

B. Magnetic Dipole Moment

The magnetic dipole moment anomaly for lepton li can be easily extracted from

the above calculation with the following result

⇥ali =
2mli

e

⇧
C ii

L + C ii
R

2

⌃

= +
1

16⇤2

 
↵

m

2
�
|UL

im|2 + |UR
im|2
⇥ m2

li

m2
lMm

I
⌥
m2

⇥S

m2
lMm

�

+
↵

m

2Re
�
UL
im

�
UR
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⇥⇥⇥ mli

mlMm

J
⌥
m2

⇥S

m2
lMm

�⌦
. (11)

C. Electric Dipole Moment

The electric dipole operator for a fermion f is usually defined as

LEDM = �i
df
2
f̄⌅µ��5fFµ� , (12)

3

where U l
R and U lM

L are the unitary matrices relating the gauge eigenstates and the

mass eigenstates

l0R = U l
RlR , lM,0

L = U lM

L lML . (22)

li lj

�

lMm lMm

⇥kS

FIG. 3. One-loop induced Feynman diagram for li ⇥ lj� in EW-scale ⇥R model.

V. THE CALCULATION

The one-loop irreducible diagram for li ⇥ lj� is shown in Fig. (3). Other two

diagrams not shown are reducible associated with the one-loop dressing for the ex-

ternal fermion lines. They are crucial for the cancellation of ultraviolet divergences

and gauge invariance in our calculation. The relevant Yukawa couplings between

the leptons, mirror leptons and the A4 singlet and triplet scalars can be deduced by

recasting the Lagrangian LS in Eq. (19) into the following component form

LS = �
3⇤

k=0

3⇤

i,m=1

�
l̄Li ULk

im lMRm + l̄Ri URk
im lMLm

⇥
⇥kS +H.c. (23)

15

Note: 

γμ and 1/ε terms 
cancel with other two 
1PR diagrams.
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3 Observables (1 Stone 3 Birds)

• LFV Radiative Decay Rate

• Anomalous Magnetic Moment

• Electric Dipole Moment 
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The partial width for li ⇥ lj� is given by (Eq.(9))
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TABLE I. Mixing parameters from global three-neutrino oscillation data taken from [5, 6].

Mixing Parameters Normal Hierarchy Inverted Hierarchy

sin2 ⇥12 0.308± 0.017 0.308± 0.017

sin2 ⇥23 0.437+0.033
�0.023 0.455+0.139

�0.031

sin2 ⇥13 0.0234+0.0020
�0.0019 0.024+0.0019

�0.0022

�/⇤ 1.39+0.38
�0.27 1.31+0.29

�0.33

�m2 = m2
2 �m2

1 (7.54+0.26
�0.22)⇥ 10�5eV2 (7.54+0.26

�0.22)⇥ 10�5eV2

�m2 = |m2
3 � (m2

1 +m2
2)/2| (2.43± 0.06)⇥ 10�3eV2 (2.38± 0.06)⇥ 10�3eV2
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The electric dipole moment for lepton li is then

dli =
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III. ANALYSIS

Recall that the standard parameterization of the PMNS matrix is given by

UPMNS =

↵

✏✏✏�

c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

�

⇣⇣⇣�
· P (41)
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Numerical Results

• Assumption
- Higgs Singlet Masses
- Mirror Charged Lepton Masses

- Yukawa Couplings

- Mixing Matrices

mlMm
= Mmirror + �m

g0S , g1S , g�0S , g
�
1S are all real!

Scenario 1 :

Scenario 2 : U lM

PMNS = U �
PMNS = U �lM

PMNS = UPMNS

m�Sk � 10MeV

Mmirror � 100 to 800 GeV

U lM

PMNS = U �
PMNS = U �lM

PMNS = U †
CW
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Branching Ratio Contour on 
Coupling and Mirror Lepton Mass Space (g0S, Mmirror) Scenario 1/2

g1S = 10�2 · g0S
g⇥0S = g0S

g⇥1S = g1S

�aµ = 288� 10�11
B(µ+ ⇤ e+�) ⇥ 5.7� 10�13(90%CL)
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FIG. 5. Same as Fig. (4) with g0S = g⇥0S and g1S = g⇥1S = 10�2 · g0S instead.

• In the same mass range of the mirror leptons the LFV process µ � e� is more

sensitive to the couplings by almost two order of magnitudes as compared with

the anomalous magnetic dipole moment of the muon. This is partly due to

the fact that the B(µ � e�) is quartic in the couplings, while in �aµ they are

quadratic.

• As one turns on the A4 triplet coupling g1S from 0 to g1S = g0S (Fig. (4) to

Fig. (8)), the contours for Log10B(µ � e�) (upper panels) are shifting toward
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Branching Ratio Contour on 
Coupling and Mirror Lepton Mass Space (g0S, Mmirror) Scenario 1/2

g1S = 0.5 · g0S
g�0S = g0S

g�1S = g1S

�aµ = 288� 10�11B(µ+ ⇤ e+�) ⇥ 5.7� 10�13(90%CL)
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FIG. 7. Same as Fig. (4) with g0S = g�0S and g1S = g�1S = 0.5 · g0S instead.

Regarding the sensitivity on the two scenarios, we can obtain the following state-

ment by comparing the red and blue contours corresponding to the scenarios 1 and

and 2 in each of these figures.

• The sensitivity of the couplings in the B(µ � e�) has been weakened by one

to two order of magnitudes for scenario 2 as compared to scenario 1. This is

due to the fact that in scenario 2, the three unknown unitary mixing matrices

are now departure from U †
CW , which allows the couplings take on larger val-
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Discussions

• In the same mass range of  the mirror leptons the LFV process μ →e γ is more sensitive 

to the couplings by almost 2 orders of  magnitudes as compared to Δaμ.

• As one turns on the A4 triplet couplings, the contours of  Log10(μ →e γ) are shifting 
toward to the left, indicating the role of  the triplet singlets becomes more relevant and 
thus the constraints on the parameter space becomes more stringent from the current 
MEG limit.

• The sensitivity of  the couplings in the B(μ →e γ) has been weakened by one to two 
orders of  magnitudes for scenario 2 as compared to scenario 1. However, this sensitivity 

is not present for Δaμ.

• As one slowly turns on the A4 triplet couplings g1S = 0 to 10-1g0S, the red contours of  

Log10(μ →e γ) of  scenario 1 remains the same when comparing NH versus IH, while the 
blue contours of  scenario 2 move toward to the left. This indicates noticeable differences 
between NH and IH of  neutrino masses for scenario 2. However, for g1S > 0.5g0S, these 

differences disappear! There features are not there for Δaμ!

• Due to the smallness of  the couplings, decay length of  the mirror leptons which depends 
on the product of  the couplings and the mixing parameters will probably decay outside 
the beam pipe, which may lead to displaced vertex at the collider. 
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Summary

• Updated analysis on μ→eγ and Δaμ in non-sterile EW-scale νR 

model with A4 symmetry (necessarily broken in charged lepton 
sector) were presented. It links LFV processes with UPMNS in the 
neutrino sector which is quite distinct from many other models.

• Current MEG limit on B(μ→eγ) imposes constraints on the 
mirror lepton masses and Yukawa couplings. Projected limit will 
put even more interesting constraints on the model. 

• Predictions of  B(μ→eγ) in the extended model with A4 
symmetry are slightly sensitive to the neutrino mass hierarchy in 

scenarios 2 but not scenario 1. However, Δaμ is not sensitive to 
the mass hierarchies.

• Regions allowed by Δaμ  excluded by current limit of  B(μ→eγ)!

• Work in progress. 

  μe conversion, μ→eee

  h→τμ, τe versus τ→μγ, eγ
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Thank You
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