

Recent Observations of Active Galactic Nuclei with H.E.S.S.

Robert Wagner for the H.E.S.S. Collaboration

H.E.S.S. High Energy Stereoscopic System

Khomas Highlands, near Windhoek, Namibia

H.E.S.S.-II

International Collaboration of 260 Scientists, 11 Countries

Germany France Austria Poland Ireland United Kingdom

H.E.S.S

Australia Armenia Sweden Namibia South Africa

H.E.S.S.-II

International Collaboration of 260 Scientists, 11 Countries

Four 12-m Telescopes: CT1-4 (HE.S.S.-I: 2002-2012)

> Germany France Austria Poland Ireland United Kingdom

H.E.S.S

Australia Armenia Sweden Namibia South Africa

H.E.S.S.-II

International Collaboration of 260 Scientists, 11 Countries

Four 12-m Telescopes: CT1-4 (HE.S.S.-I: 2002-2012)

+ One 28-m Telescope: CT5 (H.E.S.S.-II: Sept. 2012)

Germany France Austria Poland Ireland United Kingdom

H.E.S.

Australia Armenia Sweden Namibia South Africa

H.E.S.S.-II Observations/Analyses

- HESS-II Hybrid: Complete array (CT1 – 5):
 - \rightarrow Best background rejection,
 - \rightarrow slightly higher energy threshold than CT5 mono

H.E.S.S.-II Observations/Analyses

Two types of triggers supported: mono (CT5) and stereo (any two or more telescopes in coincidence)

- Stereo data analysis similar to H.E.S.S. I (some adaptations to deal with two telescope types)
- Mono data analysis relies on the finely-pixelated CT5 camera images

CT 5 Mono Observations of Blazars

- Significant overlap with Fermi-LAT
- Excellent agreement with H.E.S.S.-I (CT1-4)

R. Wagner – AGN Observations with H.E.S.S – TeVPA 2015, Kashiwa (Japan)

- detected at ≈ 40 σ (CT5 mono standard cuts)
- energy threshold ≈ 80 GeV
- significance distribution does not show any unexpected features
- source is detected at 10 σ, using only gamma-like air shower events with reconstructed energy < 100 GeV
- width of significance distribution indicates presence of a (small) systematic effect in background subtraction

(D. Zaborov)

CT 5 Mono Observations of Blazars

- Significant overlap with Fermi-LAT
- Excellent agreement with H.E.S.S.-I (CT1-4)

- detected at > 25 σ (CT5 mono loose cuts)
- energy threshold
 ≈ 100 GeV
- significance distribution does not show any unexpected features
- analysis in 3 energy bins equally spaced in log of reconstructed energy between 100 and 250 GeV
- detected at 10 σ in first energy bin,

at > 15 σ in second and third bins, resp.

(D. Zaborov)

H.E.S.S.-II Extragalactic Observing Program

- ToO observations & long-term monitoring of known VHE AGN
 - Particle acceleration / particle content / site of γ -ray emission region(s)
 - Physics beyond the standard model (LIV)
- Discovery of new potential VHE sources (including radio galaxies, radio-quiet AGN and non-active galaxies)
 - Population studies
 - EBL studies (see Schüssler/H.E.S.S. coll., this meeting)
 - Origin of cosmic rays
- Gravitationally lensed blazars
- GRB follow-up (prompt and early afterglow)
- IceCube neutrino counterparts
- Search for dark matter annihilation signatures

Long-term monitoring of known TeV blazars

≈13 year time line since H.E.S.S.-I first light

(J. Chevalier)

Long-term monitoring of known TeV blazars

Mkn 501 at multi-TeV energies 2004-2014

No obvious correlation of the variability in different bands No correlation of optical and X-rays

(G. Cologna)

 \rightarrow two or more zones/mechanisms needed

Rapid variability at multi-TeV energies

Major flaring state in June 2014 Run-by-run light curve

Rapid Variability at multi-TeV energies

Major flaring state in June 2014 4-minute binned light curve

 τ_{min} (> 2 TeV) < 10 min!

- Flux doubling time scale
 < 10 minutes
- X-rays observations follow VHE ones by ~ 90 min
- 4 x TeV flux in 90 min
- (Assuming SSC model, quadratic correlation expected)

(G. Cologna, N. Chakraborty)

Statistical Analysis of Time-Domain Behavior

Probability Distribution Function: Lognormality

- Flux probability distribution function: PDF of F(E>2 TeV) lognormal distribution
- → multiplicative processes (vs. additive processes/normal distribution)
- → similar to PKS 2155-304 flaring in 2006 with very similar linear excess flux – RMS correlation

Abramowski+10 Chevalier+15

may be a natural outcome of a "cascade-like" hadronic scenario or an intrinsic jet-disk connection

Power Spectral Density (PSD): single power law of index 1.7 \rightarrow similar to the flaring state of PKS 2155-304 that had an red-noise index of \approx 2.0

bin size of 4 minutes: fluctuations at frequencies

higher than $\approx 2 \times 10^{-3}$ are suppressed.

Mkn 501: Spectra

- Spectra clearly curved
- EBL absorption, τ≥ 1 expected above ≈ 8 TeV (Franceschini et al 2008)
- PL+EBL fit:
 - 2014 flare: Γ = 2.15 ± 0.06_{stat} ± 0.2_{sys}
 - 2012: $\Gamma = 2.2 \pm 0.1_{stat} \pm 0.2_{sys}$

• 2014 low:
$$\Gamma = 2.7 \pm 0.1_{\text{stat}} \pm 0.2_{\text{sys}}$$

 CPL/CPL+EBL do not improve fit → No signs of Klein-Nishina suppression²

Mkn 501: LIV Studies

- Hard energy spectrum: Promising for LIV Studies
- Methodology: Template Lightcurve as in H.E.S.S. Coll. 2011

95% CL Quantum Gravity limits		
	Linear term	Quadratic term
Sub-luminal	8.5 x 10 ¹⁷ GeV	1.15 x 10 ¹¹ GeV
Supra-luminal	6.4 x 10 ¹⁷ GeV	1.0 x 10 ¹¹ GeV
PKS 2155-304 (sub.)	2.1 x 10 ¹⁸ GeV	6.4 x 10 ¹⁰ GeV
GRB 090510 (sub. / sup.)	(1.8 x 10 ¹⁹ / 3.2 x 10 ¹⁹) GeV	(4.0 x 10 ¹⁰ / 3.0 x 10 ¹⁰) GeV
Mrk 501 (MAGIC 2005)	2.1 x 10 ¹⁷ GeV	2.6 x 10 ¹⁰ GeV

Best limits on the quadratic term yet!

New Discoveries: PKS 1440-389

- HBL at uncertain redshift:
 - z = 0.065 (preliminary 6dF Galaxy Survey);
 - 0.14 < *z* < 2.2 (Shaw et al. 2013)
- H.E.S.S. observations motivated by hard Fermi-LAT spectrum: $\Gamma_{2FGL} = 1.77 \pm 0.06$
- Total live time of ≈12 h during Feb. 29–May 27, 2012
- 183 excess events \rightarrow 9.1 σ

New Discoveries: PKS 1440-389

New Discoveries: PKS 1440-389

H.E.S.S. spectrum difficult to reconcile with z > 0.14 due to EBL absorption

(H. Prokoph)

Gravitationally Lensed Gamma-Ray Blazars PKS 1830-211 (*z* = 2.5)

Fermi-LAT γ -ray flare July 27, 2014 \rightarrow H.E.S.S. observations timed to detect the delayed image flare (August 12 – 26)

R. Wagner – AGN Observations with H.E.S.S – TeVPA 2015, Kashiwa (Japan)

Barnacka+11

- \rightarrow Magnification of one of the images
- \rightarrow Time delay between two images

- \rightarrow Magnification of one of the images
- \rightarrow Time delay between two images
- Possible way of "imaging" gamma-ray emission regions in blazars!

- \rightarrow Magnification of one of the images
- \rightarrow Time delay between two images

Possible way of "imaging" gamma-ray emission regions in blazars!

Gravitational lensing echoes observed in two blazars at GeV energies (Fermi)

- \rightarrow Magnification of one of the images
- \rightarrow Time delay between two images

Possible way of "imaging" gamma-ray emission regions in blazars!

Gravitational lensing echoes observed in two blazars at GeV energies (Fermi)

MAGIC detection of B0218+357, *z* = 0.94 (see Sitarek/MAGIC coll., this meeting)

Gravitationally Lensed Gamma-Ray Blazars PKS 1830-211 (z = 2.5)

18^h40^m00^s 18^h35^m00^s 18^h30^m00^s Right Ascension (J2000) 0 1 2 3 4 5 6 7 Live time [hour]

No evidence for excess (neither in total exposure nor temporary increase)

Gravitationally Lensed Gamma-Ray Blazars PKS 1830-211 (z = 2.5)

H.E.S.S. ULs far below extrapolation of Fermi flare spectrum \rightarrow EBL absorption effect?

or different locations of HE vs. VHE γ -ray production region?

Summary

- H.E.S.S. II analyses using both CT5 Mono and the full H.E.S.S.-II array
- Analysis of two bright AGN using H.E.S.S. CT5 data
 - → both detected with high significance, with an energy threshold of ≈ 80 GeV and ≈ 100 GeV for PKS 2155-304 and PG 1553+113, respectively
 - \rightarrow spectra compatible with earlier H.E.S.S. quiescent/Fermi-LAT results
- Long-term Monitoring of PKS 2155-304 reveals lognormal (multiplicative) variability
- Rapid (<10 min) variability of Mrk 501 at > 2 TeV: Lognormal variability and statistical behavior as observed in PKS 2155-304 Also used for an improved limit on quadratic LIV term
- Continued discovery of new extragalactic VHE sources, including PKS 1440-389
- Non-detection of lensing-delayed VHE flare in PKS 1830-211 \rightarrow different HE vs. VHE γ -ray emission regions?