Wavelet Analysis of the Galactic Center: Strong Support for the MSP Interpretation

Richard Bartels

S. Krishnamurthy and C. Weniger

arXiv: 1506.05104

UNIVERSITY OF AMSTERDAM 27 October 2015, Tokyo TeVPA 2015

One Minute on the GeV Excess

Credit: NASA/DOE/Fermi LAT Collaboration and T. Linden

One Minute on the GeV Excess

Many studies

Goodenough & Hooper 2009, Vitale+ (Fermi coll.) 2009, Hooper & Goodenough 2011, Hooper & Linden 2011, Boyarsky+ 2011 (no signal), Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Huang+ 2013, Gordon & Macias 2013, Macias & Gordon 2014, Zhou+2014, Abazajian+ 2014, Daylan+2014, Calore+ 2014, Gaggero + 2015, Carlson+ 2015

Credit: NASA/DOE/Fermi LAT Collaboration and T. Linden

One more minute...

Calore, Cholis & Weniger, 2014

Calore, Cholis, McCabe & Weniger, 2015

Testing the DM (or point source) interpretation

Methods

• Wavelet Decomposition [HERE]

Testing the DM (or point source) interpretation

Lee+ 2014

Methods

- Wavelet Decomposition [HERE]
- One point Statistiscs (non-poissonian noise for PSCs) [Lee+ 2014]

Testing the DM (or point source) interpretation

Lee+ 2014

Methods

- Wavelet Decomposition [HERE]
- One point Statistiscs (non-poissonian noise for PSCs) [Lee+ 2014]
- Template fit including non-poissonian noise [Lee, Lisanti, Safdi, Slatyer & Xue, 2015]

But first: what point sources?

Millisecond Pulsars

[e.g. Abazijan 2011, Gordon & Macias 2013, Hooper+ 2013,Yuan and Zhang 2014, Cholis+ 2015, Calore+ 2015,Petrovic+ 2015]

- Compatible Spectrum
- Luminosity function:

$$\frac{dN}{dL} \sim L^{-\alpha}, \ \alpha \sim 1-2$$

But consistent?

MSPs from Disrupted Globular Clusters?

Wavelet Transform:

$$\mathcal{F}_{\mathcal{W}}[\mathcal{C}](\Omega) \equiv \int d\Omega' \, \mathcal{W}(\Omega - \Omega') \mathcal{C}(\Omega')$$
with:
$$\int d\Omega \, \mathcal{W}(\Omega) = 0$$
Wavelet Kernel
Count map
(1-4 GeV)

We optimize the wavelet scale to detect Fermi point sources

Wavelet Transform:

$$\mathcal{F}_{\mathcal{W}}[\mathcal{C}](\Omega) \equiv \int d\Omega' \, \mathcal{W}(\Omega - \Omega') \mathcal{C}(\Omega')$$
with:
$$\int d\Omega \, \mathcal{W}(\Omega) = 0$$
Wavelet Kernel
(1-4 GeV)

Signal-to-noise Ratio:

We consider:

$$\mathcal{S}(\Omega) \equiv \frac{\mathcal{F}_{\mathcal{W}}[\mathcal{C}](\Omega)}{\sqrt{\mathcal{F}_{\mathcal{W}^2}[\mathcal{C}](\Omega)}}$$

• On smooth datasets with enough photons: *Gaussian random field*

We optimize the wavelet scale to detect Fermi point sources

Contributions to Wavelet Peaks:

- Point sources
- Irregularities in the diffuse emission
- Statistical Noise: $\lesssim 3\sigma$

$$\mathcal{S}(\Omega) \equiv rac{\mathcal{F}_{\mathcal{W}}[\mathcal{C}](\Omega)}{\sqrt{\mathcal{F}_{\mathcal{W}^2}[\mathcal{C}](\Omega)}}$$

Contributions to Wavelet Peaks:

- Point sources
- Irregularities in the diffuse emission
- Statistical Noise: $\leq 3\sigma$

Wavelet transform of Fermi LAT PASS8 diffuse emission model (v06)

Monte Carlo

Monte Carlo

• Fermi Diffuse & Isotropic Model + statistical noise

Monte Carlo

- Fermi Diffuse & Isotropic Model + statistical noise
- Add MSP-like point sources

• Luminosity function: $\frac{dN}{dL} \propto L^{-1.5}$ hard cutoff L_{max} • Spatial Distribution: Radial Power law with $\Gamma = -2.5$

– Vary:
$$N_{
m msp}$$
 and $L_{
m max} = 10^{34} \text{--} 10^{36} \, {
m erg \, s^{-1}}$

Compare with data

TeVPA Tokyo 27 October 2015

Compare with data

Compare with data

3FGL Sources

- All masked
- Except unassociated sources that might be part of the central MSP population → around 13 in ROI
- However, our results do not critically depend on masking these 13 sources or not

Results

TeVPA Tokyo 27 October 2015

Results

TeVPA Tokyo 27 October 2015

Results: Limits

Results: Limits (checks)

Is this really a characteristic of the GC?

Is this really a characteristic of the GC?

NO similar source population outside the inner Galaxy!

Is this really a characteristic of the GC?

A thick disk population that absorbs all counts outside the GC: excess remains

Conclusion

- We apply a novel technique on γ-ray data to look for sub-threshold point sources
- We detect at $\sim 10\sigma$ a clustering of photons in the inner galaxy, as predicted for sub-threshold MSPs
- Signal probably not caused by:
 - Disk population of MSPs
 - Other point source classes
 - Gas
- For plausible luminosity functions MSPs can account for 100% of the GeV excess
- However, not yet conclusive evidence:
 - More detailed analysis
 - X-ray and radio follow-up

Conclusion

- We apply a novel technique on γ-ray data to look for sub-threshold point sources
- We detect at $\sim 10\sigma$ a clustering of photons in the inner galaxy, as predicted for sub-threshold MSPs
- Signal probably not caused by:
 - Disk population of MSPs
 - Other point source classes
 - Gas
- For plausible luminosity functions MSPs can account for 100% of the GeV excess
- However, not yet conclusive evidence:
 - More detailed analysis
 - X-ray and radio follow-up

Thank you 🙂

TeVPA Tokyo 27 October 2015

Backup

Backup

Backup

Giant molecular $3 \times 10^5 \,\mathrm{M_{\odot}}$ $10^7 \,\mathrm{erg}\,\mathrm{s}^{-1}$ MSP

CO (tracer for HI)

 $\mathcal{O}(10-100)\,\mathrm{K\,km\,s^{-1}}$ \rightarrow probably already seen