

#### Summary of UHECR Composition Measurements by the Telescope Array Experiment

Daisuke IKEDA Institute for Cosmic Ray Research, University of Tokyo for the Telescope Array Collaboration



#### **Telescope Array Experiment**

Desert in Utah, US (1400m a.s.l.)
507 Surface Detectors (SDs)

1.2km spacing
Two layers of plastic scintillator, 3m<sup>2</sup>, 1.2cm thickness

S Fluorescence Detectors (FDs)

Middle Drum (MD) station is transferred from HiRes.
Black Rock (BR) and Long Ridge(LR) stations are newly built.

FD observation : from Nov/2007
SD observation : from Mar/2008



#### Fluorescence Detector station at BR/LR site BR/LR site: new telescopes for TA





Field of View: •Elevaton:3~33° •Horizontal: 108°

3

#### Fluorescence Detector station at MD site







#### **Transferred from HiRes**

- 14 cameras/station
- 256 PMTs/camera
- 3°-31° elevation with 1° pixel
- 114° in azimuth
- 5.2m<sup>2</sup> mirror
- S/H electronics

## X<sub>max</sub> measurement in TA

Middle Drum



Here three results are shown:

- Stereo
- BR/LR Hybrid
- MD Hybrid

X<sub>max</sub>, depth of the shower maximum, is the composition-sensitive parameter



# BR/LR/MD stereoscopic observation

#### Shower geometry: Crossing line of two Shower-Detector Planes



- Xmax resolution: ~19g/cm<sup>2</sup>
- 1160 events (logE > 18.4)



#### Xmax distribution in stereo analysis

MC: QGSJET-II-03 p/Fe





# Elongation plot from stereoscopic observation







 $18.2 \le \log_{10}(E/eV) < 18.6$ 

 $\log_{10}(\text{E/eV}) \geq 18.2$ 



1100 1200 X<sub>max</sub> (g/cm<sup>2</sup>)

distribution in BR/LR hybrid

# Elongation plot from BR/LR hybrid analysis



## **MD-SD** hybrid analysis

- Main procedure is same as BR/LR hybrid.
- Applied the cuts based on the pattern recognition technique





- Xmax resolution: ~20g/cm<sup>2</sup>
- 613 events (logE > 18.4)

#### Xmax distribution in MD hybrid



## Elongation plot from MD hybrid



14

## Comparison with QGSJET-II-03



#### Statistical test

#### "shift plot"

- Check the distribution shape agreement with shifting the MC distribution
- Plot Δ<Xmax> required to maximize the data/MC agreement
- Color bands : shift range required for QGSJET-01c, QGSJET-II-03 and 04, Sibyll 2.1, EPOS p/Fe





- Proton is compatible with data
- Iron shape with ~60g/cm2 shift is still incompatible with data
- Pure nitrogen is disfavored as well

#### Meta analysis: Composition WG

- Report from the composition working group in UHECR conference
- TA data cannot distinguish between mix and QGSJET-II-03 protons at this level of systematic uncertainty



#### conclusion

Three results of the Xmax measurements are presented in detail

- Stereo
- BR/LR Hybrid
- MD Hybrid
- Three results are in agreement within the systematic error
- C "Light" composition
  - Statistical test: pure iron and nitrogen are incompatible with data

#### Backup



## **Telescope Array Collaboration**



RU Abbasi<sup>1</sup>, M Abe<sup>13</sup>, T Abu-Zayyad<sup>1</sup>, M Allen<sup>1</sup>, R Anderson<sup>1</sup>, R Azuma<sup>2</sup>, E Barcikowski<sup>1</sup>, JW Belz<sup>1</sup>, DR Bergman<sup>1</sup>, SA Blake<sup>1</sup>, R Cady<sup>1</sup>, MJ Chae<sup>3</sup>, BG Cheon<sup>4</sup>, J Chiba<sup>5</sup>, M Chikawa<sup>6</sup>, WR Cho<sup>7</sup>, T Fujii<sup>8</sup>, M Fukushima<sup>8,9</sup>, T Goto<sup>10</sup>, W Hanlon<sup>1</sup>, Y Hayashi<sup>10</sup>, N Hayashida<sup>11</sup>, K Hibino<sup>11</sup>, K Honda<sup>12</sup>, D Ikeda<sup>8</sup>, N Inoue<sup>13</sup>, T Ishii<sup>12</sup>, R Ishimor<sup>2</sup>, H Ito<sup>14</sup>, D Ivanov<sup>1</sup>, CCH Jui<sup>1</sup>, K Kadota<sup>16</sup>, F Kakimoto<sup>2</sup>, O Kalashev<sup>17</sup>, K Kasahara<sup>18</sup>, H Kawai<sup>19</sup>, S Kawakami<sup>10</sup>, S Kawana<sup>13</sup>, K Kawata<sup>8</sup>, E Kido<sup>8</sup>, HB Kim<sup>4</sup>, JH Kim<sup>1</sup>, JH Kim<sup>25</sup>, S Kitamura<sup>2</sup>, Y Kitamura<sup>2</sup>, V Kuzmin<sup>17</sup>, YJ Kwon<sup>7</sup>, J Lan<sup>1</sup>, SI Lim<sup>3</sup>, JP Lundquist<sup>1</sup>, K Machida<sup>12</sup>, K Martens<sup>9</sup>, T Matsuda<sup>20</sup>, T Matsuyama<sup>10</sup>, JN Matthews<sup>1</sup>, M Minamino<sup>10</sup>, K Mukai<sup>12</sup>, I Myers<sup>1</sup>, K Nagasawa<sup>13</sup>, S Nagataki<sup>14</sup>,T Nakamura<sup>21</sup>, T Nonaka<sup>8</sup>, A Nozato<sup>6</sup>, S Ogio<sup>10</sup>, J Ogura<sup>2</sup>, M Ohnishi<sup>8</sup>, H Ohoka<sup>8</sup>, K Oki<sup>8</sup>, T Okuda<sup>22</sup>, M Ono<sup>14</sup>, A Oshima<sup>10</sup>, S Ozawa<sup>18</sup>, IH Park<sup>23</sup>, MS Pshirkov<sup>24</sup>, DC Rodriguez<sup>1</sup>, G Rubtsov<sup>17</sup>, D Ryu<sup>25</sup>, H Sagawa<sup>8</sup>, N Sakurai<sup>10</sup>, AL Sampson<sup>1</sup>, LM Scott<sup>15</sup>, PD Shah<sup>1</sup>, F Shibata<sup>12</sup>, T Shibata<sup>8</sup>, H Shimodaira<sup>8</sup>, BK Shin<sup>4</sup>, JD Smith<sup>1</sup>, P Sokolsky<sup>1</sup>, RW Springer<sup>1</sup>, BT Stokes<sup>1</sup>, SR Stratton<sup>1,15</sup>, TA Stroman<sup>1</sup>, T Suzawa<sup>13</sup>, M Takamura<sup>5</sup>, M Takeda<sup>8</sup>, R Takeishi<sup>8</sup>, A Taketa<sup>26</sup>, M Takita<sup>8</sup>, Y Tameda<sup>11</sup>, H Tanaka<sup>10</sup>, K Tanaka<sup>27</sup>, M Tanaka<sup>20</sup>, SB Thomas<sup>1</sup>, GB Thomson<sup>1</sup>, P Tinyakov<sup>17,24</sup>, I Tkachev<sup>17</sup>, H Tokuno<sup>2</sup>, T Tomida<sup>28</sup>, S Troitsky<sup>17</sup>, Y Tsunesada<sup>2</sup>, K Tsutsumi<sup>2</sup>, Y Uchihori<sup>29</sup>, S Udo<sup>11</sup>, F Urban<sup>24</sup>, G Vasiloff<sup>1</sup>, T Wong<sup>1</sup>, R Yamane<sup>10</sup>, H Yamaoka<sup>20</sup>, K Yamazaki<sup>10</sup>, J Yang<sup>3</sup>, K Yashiro<sup>5</sup>, Y Yoneda<sup>10</sup>, S Yoshida<sup>19</sup>, H Yoshii<sup>30</sup>, R Zollinger<sup>1</sup>, Z Zundel<sup>1</sup>

<sup>1</sup>High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, <sup>2</sup>Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, <sup>3</sup>Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, <sup>4</sup>Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, <sup>5</sup>Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, <sup>6</sup>Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan, <sup>7</sup>Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, <sup>8</sup>Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, <sup>9</sup>Oraduate School of Science, Osaka City University, Osaka, Osaka, Japan, <sup>11</sup>Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, <sup>12</sup>Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, <sup>16</sup>The Graduate School of Science and Engineering, Saitama University, Saitama, Japan, <sup>14</sup>Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, <sup>15</sup>Department of Physics and Astronomy, Rutyers University - The State University of New Jersey, Piscataway, New Jersey, USA, <sup>16</sup>Department of Physics, Tokyo City University, Shinguku-ku, Tokyo, Japan, <sup>15</sup>Department of Physics, Chiba University, Chiba, Chiba, Japan, <sup>20</sup>Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, <sup>21</sup>Faculty of Science, Kochi University, Kochi, Kochi, Kochi, Japan, <sup>20</sup>Department of Physics Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan, <sup>25</sup>Department of Physics, Chiba University, Chiba, Japan, <sup>20</sup>Institute of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, University, Kochi, Kochi, Japan, <sup>24</sup>Faculty of Science, Kochi University, Kochi, Kochi, Japan, <sup>24</sup>Pepartment of Physics, Chiba University, Graduate School of Natural Sciences, Ulsan National

#### USA, Japan, Korea, Russia, Belgium



Resolutions: ~1degrees of arrival direction ~7% of energy ~ 20g/cm2 for Xmax

## Fluorescence technique

Shower geometry reconstruction:

- Stereo : crossing of two shower-detector planes
- Monocular : timing information of each PMT
- Hybrid : monocular + SD timing

Longitudinal development reconstruction:

- Inverse MC method
  - Generate MC event with GH function and compare with data.
  - Search best GH parameters.
- E<sub>cal</sub> : Integrate obtained GH function
- E<sub>primary</sub>: Correct the missing energy (neutrino) to E<sub>cal</sub>





