

Radio detection of air showers

Frank G. Schröder

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Advantages of radio technique

- Direction, energy and X_{max} around the clock
- Accurate measurement of em. shower component
- Energy range of assumed galactic extragalactic transition

2 29 October 2015 TeVPA 2015, Kashiwa, Japan

Emission mechanisms

geomagnetic effect ~ 90%

Askaryan effect ~ 10%

29 October 2015 TeVPA 2015, Kashiwa, Japan

3

Radio Detection of Air Showers

Simulated footprints of radio signal

Slightly asymetric emission due to interplay of mechanism
Forward beamed: large footprint only for inclined showers

CoREAS simulations (by T. Huege)

29 October 2015 TeVPA 2015, Kashiwa, Japan

4

Do simulations describe reality?

- Different codes agree on main features
- Measured amplitudes reproduced within ~20% uncertainty

29 October 2015 TeVPA 2015, Kashiwa, Japan

5

Radio Detection of Air Showers

Location of selected, modern experiments and geomagnetic field

6 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Designs of modern radio arrays

29 October 2015 TeVPA 2015, Kashiwa, Japan

7

Radio Detection of Air Showers

Detectors: antennas

- Typical properties
 - frequency band: 30-80 MHz
 - hybrid detection with particle detectors: external trigger or cross-check
 - digital DAQ and offline analysis

8

Reconstruction of shower parameters

- Direction
 - example: LOPES
- Energy
 - example: AERA
- Shower maximum
 - examples: LOFAR, Tunka-Rex

Arrival direction

- Air shower radio pulse = flash for a few 10 ns
- Interferometric imaging:

 \rightarrow direction precision < 0.7°

10 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Auger Engineering Radio Array

- 153 autonomous stations on 17 km²
 - world-largest radio array
 - part of the enhancement area of the Pierre Auger Observatory

750 m

Auger Muon and Infill Ground Array

- Surface Detector
- with Muon Detector

11 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Auger Engineering Radio Array

- 153 autonomous stations on 17 km²
 - world-largest radio array
 - part of the enhancement area of the Pierre Auger Observatory

Auger Engineering Radio Array

- LPDA antenna
- Butterfly antenna

Auger Muon and Infill Ground Array

- Surface Detector
- with Muon Detector

12

750 m

13 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

X_{max}: high precision exploiting simulations

Pick the one of many simulations describing data best

- very high precision < 20 g/cm²
- provided no unknown systematics: competitive with fluorescense

14 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Shower maximum: proof by Tunka-Rex

- Sparse (200 m distance) and economic radio array
- Correlation of radio and air-Cherenkov measurements
 - Tunka-Rex accuracy with ~ 5-10 antennas: 40 g/cm²

Outlook 1: inclined showers

Electrons and photons attenuate in atmosphere

Only muons and radio emission survives (no absorption)

Complementary information on shower \rightarrow primary particle type

Outlook 2: SKA

Phase 1: ~ 60,000 antennas on ½ km²

Scintillator array planned for E > 10¹⁶ eV

400

200

Conclusion

- Significant progress in last years
 - digital techniques enabled revival of radio detection
 - radio emission understood to at least 10-20 % accuracy
- Competitive accuracy for air shower parameters
 - direction < 0.7°</p>
 - energy < 20% (precision + scale)</pre>
 - X_{max} < 40 g/cm² (better with high antenna density)
- Radio has highest potential combined with particles
 - cross-calibration of absolute energy scale
 - mass composition around the clock (X_{max} + e/µ)

Backup

More examples for energy reconstruction

29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Huge footprint for inclined showers

- Sparse antenna spacing feasible for inclined showers
 - Radio becomes applicable to largest scales for reasonable costs

21 29 October 2015 TeVPA 2015, Kashiwa, Japan

1) Shower maximum via wavefront

- Radio wavefront has hyperbolic shape
- Cone angle → shower maximum

22 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Cross-correlation beamforming

 Digital Interferometry: only air shower pulse correlated in all antennas, when looking in the arrival direction

General noise situation

Tunka-Rex in Siberia close to Lake Baikal

- SALLA antennas, 30 80 MHz
- Cross-calibration with co-located air-Cherenkov detector
 - Precision and absolute scale of energy and shower maximum

25 29 October 2015 TeVPA 2015, Kashiwa, Japan

Tunka-Rex example event

26 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Experiments: First Detection

- Qualitative features discovered 50 years ago
- Jelley et al Nature 1965 R. A. Porter MSc Thesis 1967,

LOPES (also since 2003, was at KIT)

- 30 dipole antennas
 - 40 80 MHz
 - east-west / north-south
- Trigger by KASCADE

28 29 October 2015 TeVPA 2015, Kashiwa, Japan

Interferometric beamforming at LOPES

- Digitally shift all traces according to arrival time of hyperbolic wavefront
- Cross-correlation of antennas

LOPES Coll.,

Radio shower maximum consistent

30 29 October 2015 TeVPA 2015, Kashiwa, Japan

CODALEMA

Several configurations since 2003, close to Nancy, France
now: self-triggering stations (30-80 MHz) + particle detectors

Evidence for emission mechanisms

- Geomagnetic angle determines efficiency
- Askaryan effect

32 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

frank.schroeder@kit.edu Institut für Kernphysik (IKP)

0.8

0.6

270

LOFAR superterp, the Netherlands

- Several 100 antennas on several 100 m²
 - Low band: 10-90 MHz
 - High band: 110-190 MHz

Thunderstorms

High atmospheric E-fields influence radio emission

34 29 October 2015 TeVPA 2015, Kashiwa, Japan

Pulse Height/N

Radio Detection of Air Showers

frank.schroeder@kit.edu Institut für Kernphysik (IKP)

fair-weather

150

100

50

Comparing simulations with AERA event

Example event with calibrated AERA measurements
CoREAS and ZHAires simulations reproduce shape
differences compatible with calibration scale uncertainty?

Pierre Auger Collaboration, ICRC2013, id #899

CROME at KIT

- Commercial GHz electronics
- Detection in C band

3.4 - 4.2 GHz

Low noise: T ~ 80 K

Frequency [Hz]

Radio Detection of Air Showers

Cherenkov ring seen with CROME

- High detection efficiency on Cherenkov ring at GHz frequencies
- Compatible with CoREAS prediction of geomagnetic and Askaryan emission
- Polarization is not compatible with unpolarized emission, like molecular bremsstrahlung!

ARENA 2014 and PRL 113 (2014) 221101

ANITA (detected ~ 14 CR events)

38 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

Simulated frequency spectra

vertical 10¹⁷ eV shower, total field, n=r

39 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers

T. Huege et al., ARENA2012

Simulated pulses: time series

vertical 10¹⁷ eV shower, west field, n=1

T. Huege et al., ARENA2012

40 29 October 2015 TeVPA 2015, Kashiwa, Japan Radio Detection of Air Showers