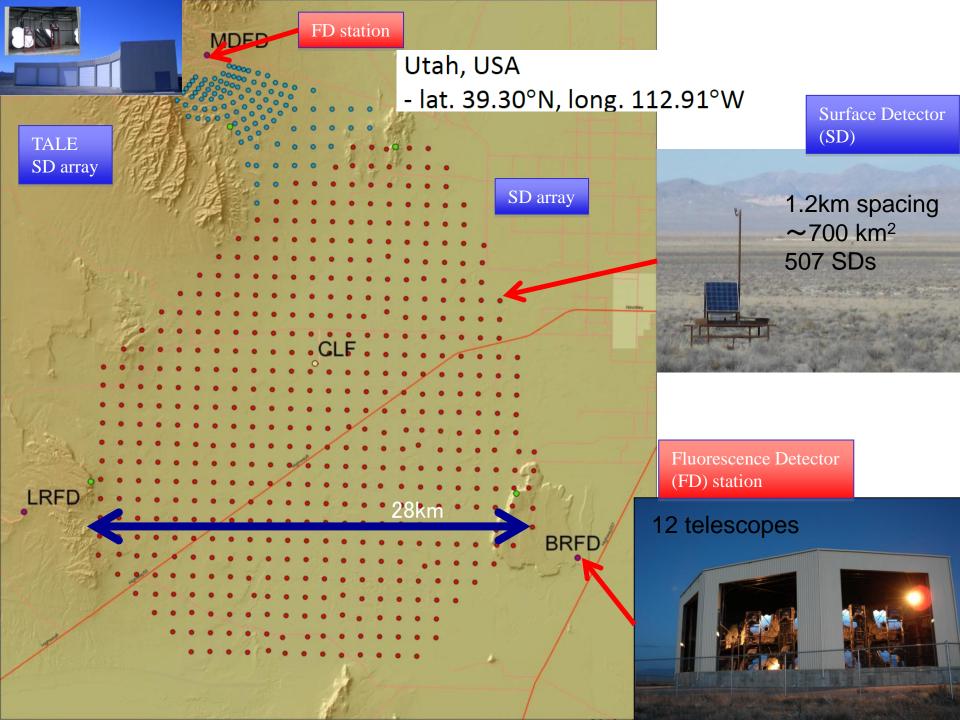


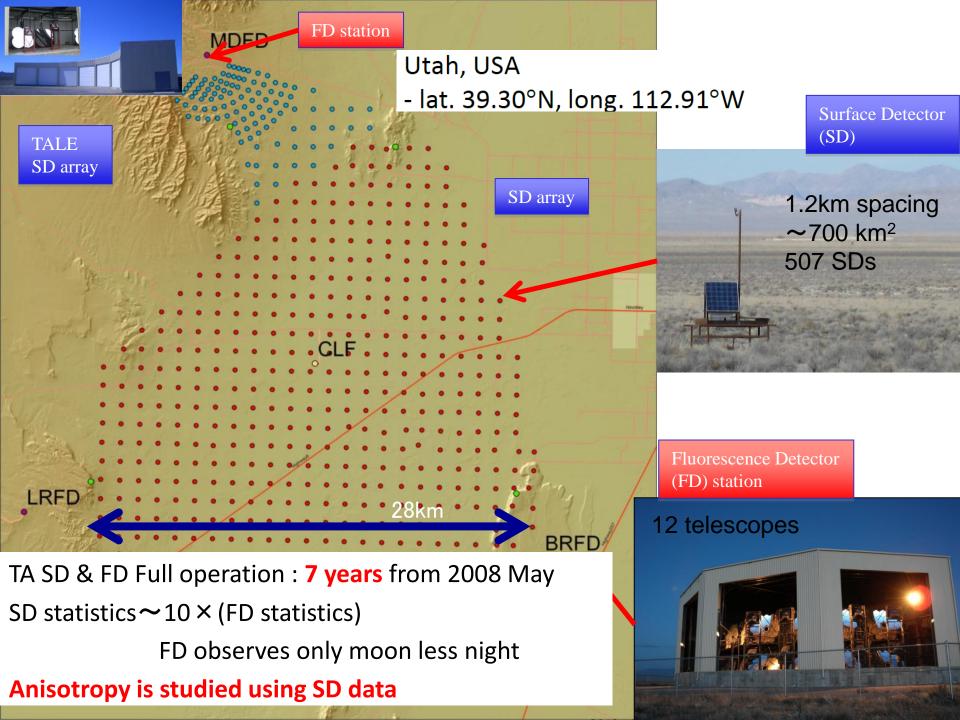
TA Anisotropy Summary

Eiji Kido for the Telescope Array Collaboration

Outline

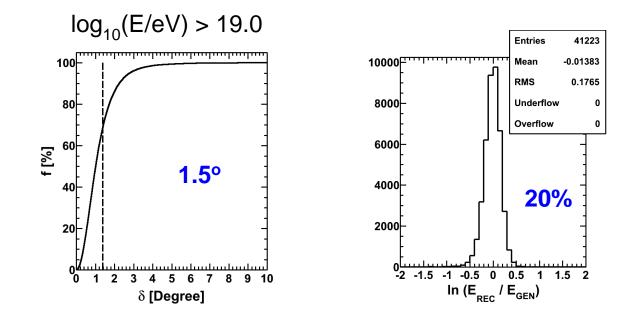
- Introduction
- Data set for anisotropy studies
- Results
 - Autocorrelation
 - Hotspot
 - Correlation with LSS
 - Anisotropy in energy spectrum
 - Correlation with nearby AGNs
 - Search for EeV protons of Galactic origin
- Summary and conclusions

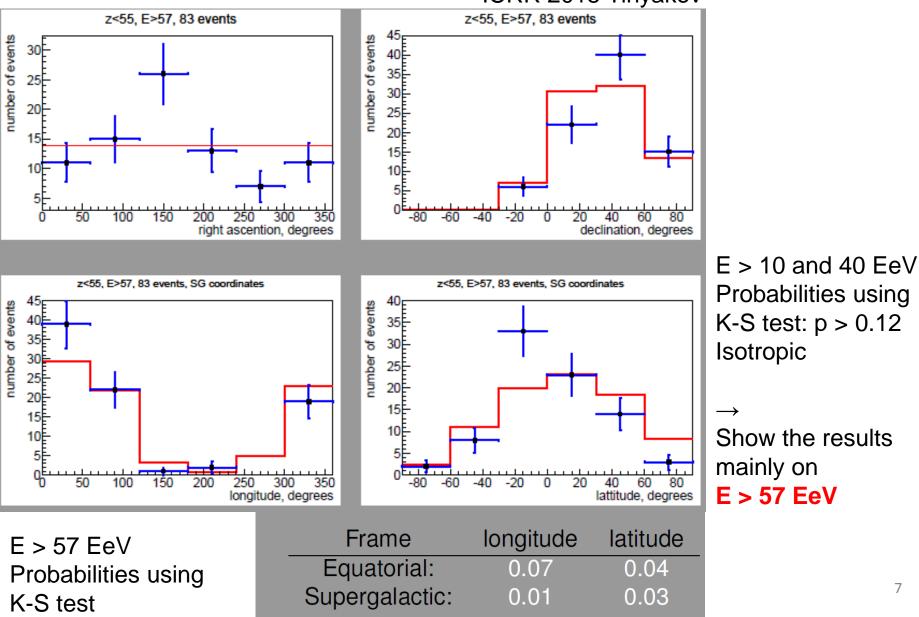

Telescope Array Collaboration


R.U. Abbasi,¹ M. Abe,² T. Abu-Zayyad,¹ M. Allen,¹ R. Azuma,³ E. Barcikowski,¹ J.W. Belz,¹ D.R. Bergman,¹ S.A. Blake,¹ R. Cady,¹ M.J. Chae,⁴ B.G. Cheon,⁵ J. Chiba,⁶ M. Chikawa,⁷ W.R. Cho,⁸ T. Fujii,⁹ M. Fukushima,^{9,10} T. Goto,¹¹ W. Hanlon,¹ Y. Havashi,¹¹ N. Havashida,¹² K. Hibino,¹² K. Honda,¹³ D. Ikeda,⁹ N. Inoue,² T. Ishii,¹³ R. Ishimori,³ H. Ito,¹⁴ D. Ivanov,¹ C.C.H. Jui,¹ K. Kadota,¹⁵ F. Kakimoto,³ O. Kalashev,¹⁶ K. Kasahara,¹⁷ H. Kawai,¹⁸ S. Kawakami,¹¹ S. Kawana,² K. Kawata,⁹ E. Kido,⁹ H.B. Kim,⁵ J.H. Kim,¹ J.H. Kim,¹⁹ S. Kitamura,³ Y. Kitamura,³ V. Kuzmin,¹⁶ Y.J. Kwon,⁸ J. Lan,¹ S.I. Lim,⁴ J.P. Lundquist,¹ K. Machida,¹³ K. Martens,¹⁰ T. Matsuda,²⁰ T. Matsuyama,¹¹ J.N. Matthews,¹ M. Minamino,¹¹ Y. Mukai¹³ I. Myers¹ K. Nagasawa² S. Nagataki¹⁴ T. Nakamura²¹ T. Nonaka⁹ A. Nozato⁷ S. Ogio¹¹ J. Ogura,³ M. Ohnishi,⁹ H. Ohoka,⁹ K. Oki,⁹ T. Okuda,²² M. Ono,²³ A. Oshima,²⁴ S. Ozawa,¹⁷ I.H. Park,²⁵ M.S. Pshirkov,^{16,26} D.C. Rodriguez,¹ G. Rubtsov,¹⁶ D. Rvu,¹⁹ H. Sagawa,⁹ N. Sakurai,¹¹ L.M. Scott,²⁷ P.D. Shah,¹ F. Shibata,¹³ T. Shibata,⁹ H. Shimodaira,⁹ B.K. Shin,⁵ H.S. Shin,⁹ J.D. Smith,¹ P. Sokolsky,¹ R.W. Springer,¹ B.T. Stokes,¹ S.R. Stratton,^{1,27} T.A. Stroman,¹ T. Suzawa,² M. Takamura,⁶ M. Takeda,⁹ R. Takeishi,⁹ A. Taketa,²⁸ M. Takita,⁹ Y. Tameda,¹² H. Tanaka,¹¹ K. Tanaka,²⁹ M. Tanaka,²⁰ S.B. Thomas,¹ G.B. Thomson,¹ P. Tinyakov,^{30,16} I. Tkachev,¹⁶ H. Tokuno,³ T. Tomida,³¹ S. Troitsky,¹⁶ Y. Tsunesada,³ K. Tsutsumi,³ Y. Uchihori,³² S. Udo,¹² F. Urban,³⁰ G. Vasiloff,¹ T. Wong,¹ R. Yamane,¹¹ H. Yamaoka,²⁰ K. Yamazaki,²⁸ J. Yang,⁴ K. Yashiro,⁶ Y. Yoneda,¹¹ S. Yoshida,¹⁸ H. Yoshii,³³ R. Zollinger,¹ and Z. Zundel¹

¹High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA
 ¹The Graduate School of Science and Engineering, Tsoip Institute of Technology, Meynen, Tokyo, Japan
 ¹Graduate School of Science and Engineering, Tsoip Institute of Technology, Meynen, Tokyo, Japan
 ¹Department of Physics and Institute for the Early Universe, Eacha Wonnas University, Scoolacenum-gu, Scoul, Korea
 ¹Department of Physics, Tokyo University of Science, Noda, Chika, Japan
 ¹Department of Physics, Nucle University, Gociaconum-gu, Scoul, Korea
 ¹Department of Physics, Cosula City University of Choky, Kashiwa, Chika, Japan
 ¹Nacuti Institute for the Physics and Mathematics of the University of Choky, Rashiwa, Chika, Japan
 ¹Nacuti Institute of Science, Osaka City University, Schkan, Kangawa, Japan
 ¹³Taeriticgulinary Graduate School of Medicine and Engineering, University of Choky, Gahana, Chika, Japan
 ¹⁴Astrophysical By Bang Laboratory, RIKEN, Wako, Satiana, Japan
 ¹⁵Department of Physics, Choko University, Chika, Japan
 ¹⁶Department of Physics, Choko University, Kasuka, Japan
 ¹⁶Department of Physics,

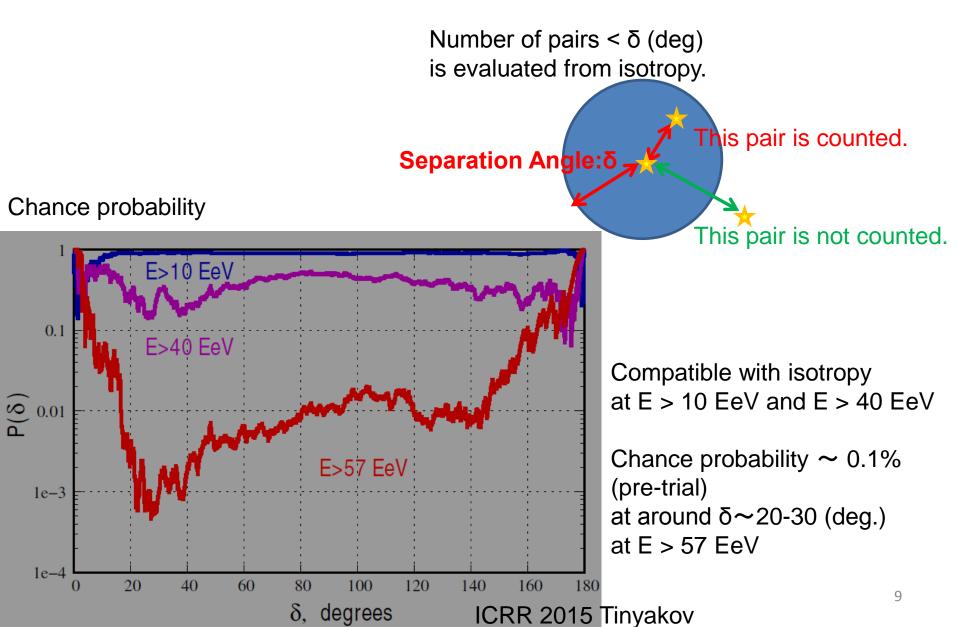
COPF


5 countries, \sim 120 collaborators

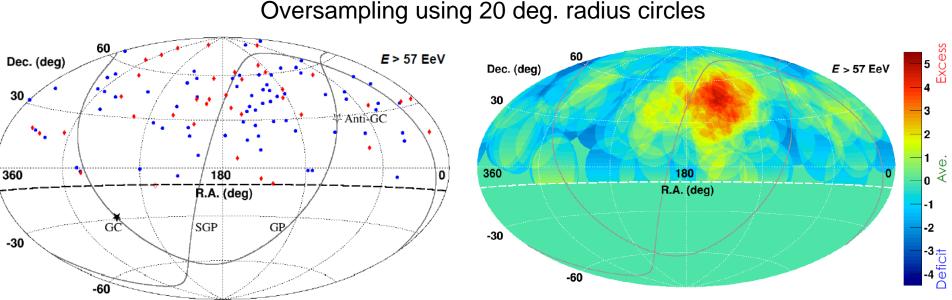


Data Set for anisotropy studies

- SD data (2008 May 12 2015 May 11)
- Zenith angle < 55 (deg.)
- E > 10 EeV 2996 events, E > 40 EeV 210 events, E > 57 EeV 83 events
- Energy resolution ~20%
- Angular resolution: better than 1.5 (deg.)



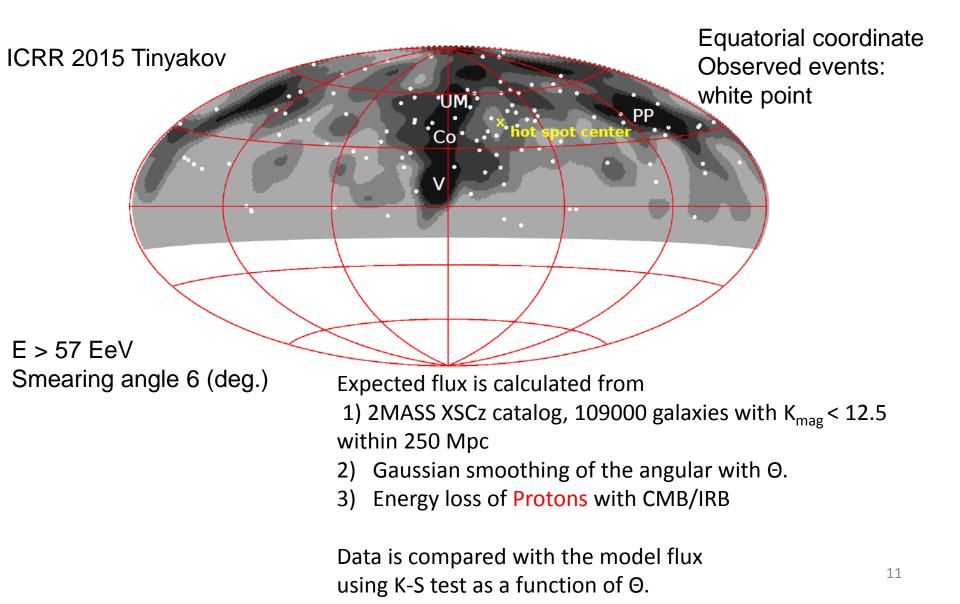
Distribution of arrival directions ICRR 2015 Tinyakov



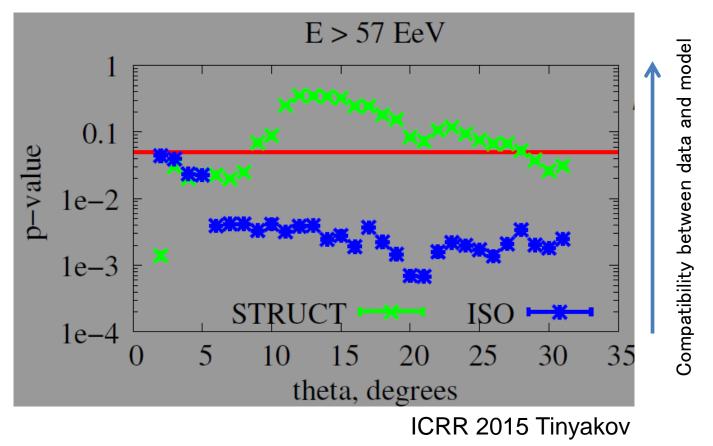
Results of anisotropy studies

Autocorrelation

Updated Hotspot analysis

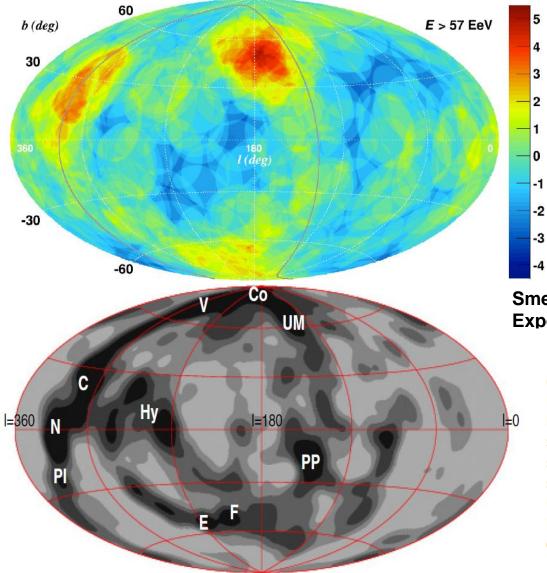


Blue: 5 year data (published in *ApJL 790, L21 (2014)*) Red: 6 and 7 year data (37 events)


Equatorial coordnate ICRR 2015 Kawata

- Loose cut data, 7 year data 109 events (Zenith angle < 55 (deg.))
- Max significance: RA 148.4 (deg.) Dec 44.5 (deg.) ("Hotspot")
 Observed: 24 events, isotropy: 6.88 events → Significance: 5.1σ (Li-Ma)
- Chance probability to exceed 5.1σ in the exposure: 3.4σ (0.037 %) (post-trial) (15, 20, 25, 30, 35 (deg.) radius circles are searched.)
 3.4σ (0.037 %) was also obtained in 5 year data in *ApJL 790, L21 (2014)*

Correlation with LSS



Compatibility with LSS and isotropy

- Compatible with LSS
- Compatibility with isotropy is low ~a few × 0.1 % (pre-trial) for large smearing angles (> 5 deg.)

Hotspot analysis for the whole sky (Galactic coordinate)

E > 57 EeV TA 6 years 87 events Auger 10 years157 events (No correction of Energy scale is applied.)

→ Over-density around the super Galactic plane in the future?

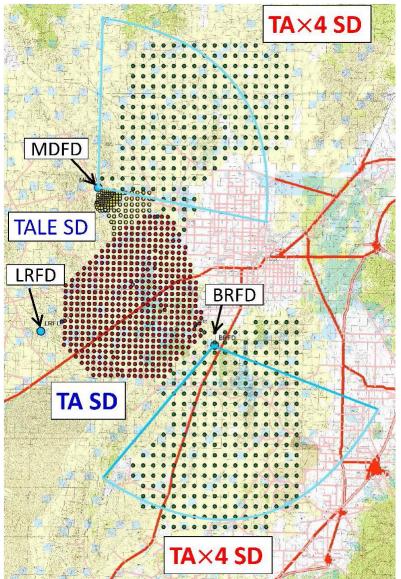
Smearing angle: $\Theta_s = 6^\circ$, E > 57 EeV Expected flux distribution

C: Centaurus supercluster (60 Mpc); Co: Coma cluster (90 Mpc); E: Eridanus cluster (30 Mpc); F: Fornax cluster (20 Mpc); Hy: Hydra supercluster (50 Mpc); N: Norma supercluster (50 Mpc); PI: Pavo-Indus supercluster (65 Mpc); PI: Pavo-Indus supercluster (70 Mpc); PP: Perseus-Pisces supercluster (70 Mpc); UM: Ursa Major (20 Mpc); and V: Virgo cluster (20 Mpc).

Other anisotropy studies

• Anisotropy in energy spectrum

- Comparison between 2 energy spectra
- "On source": within 30 (deg.) from super-galactic plane
- \rightarrow ~3.2 σ difference between 2 energy spectra


• Correlation with nearby AGNs

- Same catalog (VCV) and same parameters $(3.1^{\circ} \text{ angular scale }, z \leq 0.018, E > 57 \text{ EeV})$ are used as Pierre Auger. (Spectrum data set (zenigh angle < 45 (deg.)) is used.)
- − 24 events are correlated with nearby AGNs out of 64 events \rightarrow chance probability: 1.2 %
- Search for EeV protons of Galactic origin
 - 1-3 EeV: data is compatible with isotropy
 - Upper limit of $(N_{Data} N_{MC})/N_{MC}$ $(N_{MC} : number of events from isotropic MC)$
 - \rightarrow fraction of Galactic proton < \sim 1% at 90% C.L.

Summary and Conclusions

- Chance probability of the hotspot for 7 years remains 3.4σ as for 5-year initial sample.
- Significance of anisotropy is still not enough for the definite conclusion.
- → The extension project TAx4 is in progress.
 Plan: collect ~19 year TA SD data until 2020

TAx4 experiment

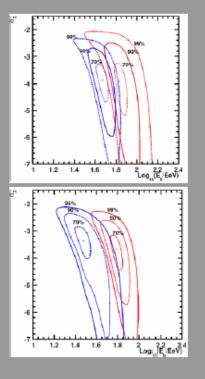
500 SDs, 2.08 km spacing covers ~3x TA SD (about 2100 km²) Total about 4x TA SD 3000 km² (full operation:2017 Dec -) \rightarrow \sim 12 year TA SD \sim 7 year TA SD from the extension \rightarrow ~ 19 year TA SD data until 2020 2015 April approved

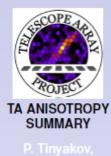
Back Up

Anisotropy in energy spectrum

Strategy:

- Split the event set into "on-source" and "off-source" parts
- compare the "on-source" and "off-source" energy spectra


Two analyses:


 "On-source" = within 30° from Supergalactic plane

 \implies ~ 3.2 σ difference

► "On-source" = within 11° from VCV AGNs $\implies \sim 2.4\sigma$ difference

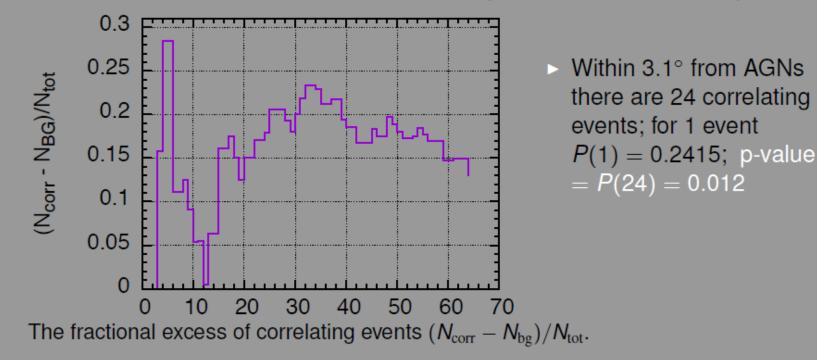
P. Tinyakov, for the Telescope Array Collaboration

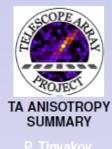
TA detector and data

Global distributions

Point sources

Hot spot


Correlation with LSS


Other searches

Conclusions

CORRELATION WITH NEARBY AGN

- For compatibility with previous TA studies use the "spectrum" data set: strict cuts, $\theta_z < 45^\circ$, E > 57 EeV, 7 years = 64 events
- > Putative sources: AGN from VCV catalog with z < 0.018 (472 objects)

P. Tinyakov, for the Telescope Array Collaboration

TA detector and data

Global distributions

Point sources

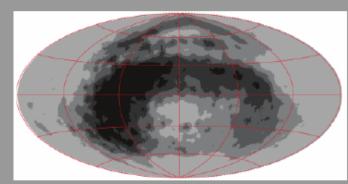
Hot spot

Correlation with LSS

Other searches

Conclusions

Search for EeV protons of Galactic origin


Motivation:

- At the transition from ballistic to diffusive regime (E ~ 1 EeV), one can predict the proton flux from galactic sources in a model-independent way. It is strongly anisotropic.
- Comparing to observed flux, the proton component may be constrained.

Results:

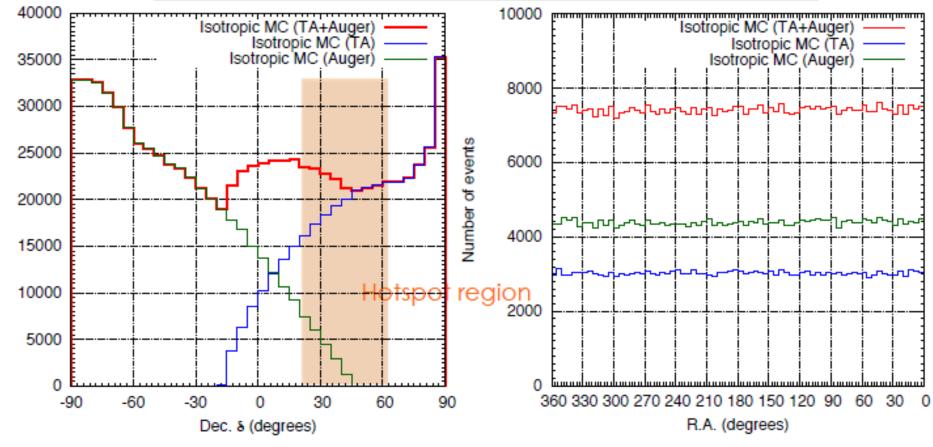
▶ fraction of Galactic protons in EeV cosmic rays is \lesssim 1% at 90% CL.

D. Ivanov, P2CR 858, Aug. 1

SUMMARY

P. Tinyakov, for the Telescope Array Collaboration

TA detector and data

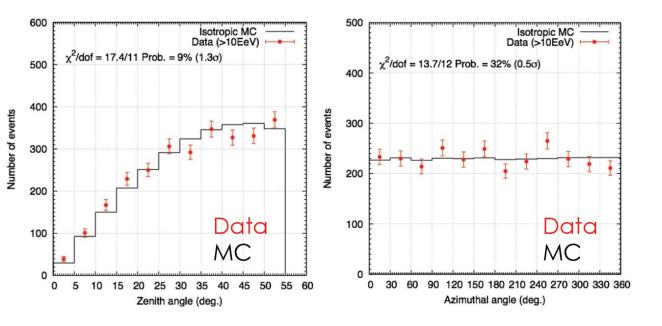

Global distributions Point sources Hot spot Correlation with LSS

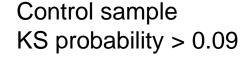
Other searches

Conclusions

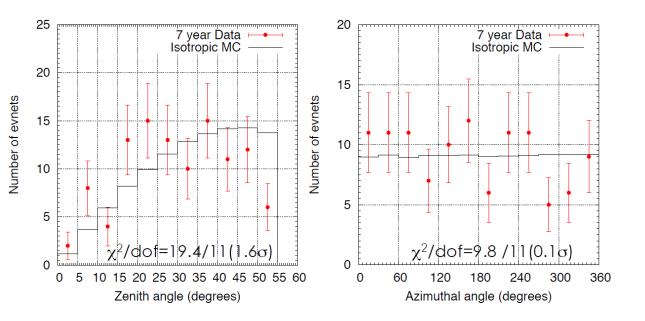
MC Background (TA+PAO) Dec. and R.A. distribution

A uniform distribution according to the TA+Auger geometrical exposure (sin0 cos0 random).




Number of events / cos(lõl)

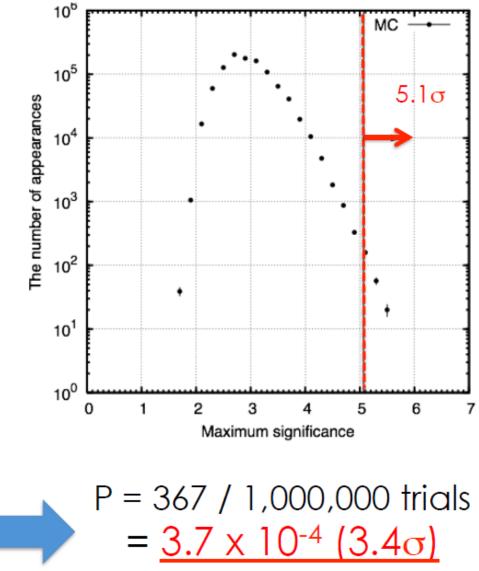
Total 534,000 events


20

Data/MC comparison E > 10 EeV

Data/MC comparison E > 57 EeV

Control sample KS probability > 0.09


Chance probability

Random 109 events assuming isotropy (TA geometrical exposure)

Adopt same analysis & create significance maps (by five oversampling radius : 15, 20, 25, 30, 35 deg.)

Search for maximum significance in the FoV

Repeat 1 million times How many $>5.1\sigma$?

ICRR 2015 Kawata