Determination of the extragalactic background light spectral energy distribution with H.E.S.S.

<u>Fabian Schüssler</u>, <u>Matthias Lorentz</u>, Pierre Brun (Irfu – CEA Saclay) David Sanchez (LAPP, CNRS/IN2P3) *for the H.E.S.S. Collaboration*

TeVPA 2015

Extragalactic background light and γ-ray absorption

What is the EBL ?

Background photon field (IR to UV) originating from starlight and dust re-emission. Direct measurements are difficult

EBL absorbs γ rays by pair creation

Universe not transparent to γ rays over extragalactic distances : **optical depth** τ

Attenuation pattern in VHE spectra of distant sources

$$\tau(E_{\gamma}, z_{s}) = c \int_{0}^{z_{s}} dz \frac{dt}{dz} \int_{0}^{2} d\mu \frac{\mu}{2} \int_{\epsilon_{thr}}^{\infty} d\epsilon \frac{dn_{EBL}(\epsilon, z)}{d\epsilon} \sigma_{\gamma\gamma} (E_{\gamma}(1+z), \epsilon, \mu)$$

$$TeV \gamma e^{+} \qquad \Phi_{obs}(E_{\gamma}) = \Phi_{int}(E_{\gamma})e^{-\tau(E_{\gamma}, z_{s})} \qquad \underbrace{\mathsf{EBL}}_{\mathsf{P}} \qquad \underbrace{\mathsf{P}}_{\mathsf{D}} \qquad \underbrace{\mathsf{EBL}}_{\mathsf{P}} \qquad \underbrace{\mathsf{P}}_{\mathsf{D}} \qquad \underbrace{\mathsf{EBL}}_{\mathsf{P}} \qquad \underbrace{\mathsf{P}}_{\mathsf{D}} \qquad \underbrace{\mathsf{P}}_{\mathsf{D}}$$

• H.E.S.S. phase I :

- 4 telescopes with a 107 m² dish
- Cameras with 960 PMTs
- Field of view 5°
- Energy range : 100 GeV to 50 TeV (~10% resolution)

• H.E.S.S. phase II :

- Additional 5th telescope, 600 m²
- Camera with 2048 PMTs
- Field of view 3.5°
- Energy threshold lowered to ~30 GeV

See numerous H.E.S.S. contributions at this conference...

Previous EBL study with H.E.S.S.

- Model dependent approach: model of Francheschini et al. 2008 (FR08)
- Fixed shape, normalization only
 - α= 0 : no EBL
 - α= 1 : EBL normalized to FR08
- EBL detection at 8.8 σ :
 α = 1.27^{+0.18}_{-0.15} (stat) +/- 0.25 (syst)
- Now, different approach :

Can we also determine the shape of the EBL with H.E.S.S. in a model independent way ?

1

10

 $\lambda [\mu m]$

Spectra : the essential ingredient

- Difficulty : disentangle EBL effect and intrinsic curvature
 - Simple assumptions on intrinsic blazar spectra fitted :

Power law :
$$\frac{dN}{dE} \propto E^{-\alpha}$$

dE

EBL shape : from splines to envelopes

A grid to test local EBL shapes

Local (z=0) EBL shapes as splines inside a grid

 Two grids shifted against each other to reduce constraints on shapes

$$\Phi_{obs}(E_{\gamma}) = \Phi_{int}(E_{\gamma})e^{-\tau_i(E_{\gamma}, z_s)}$$

Optical depth computed for every shape on the grid

- i = 0 ...116,640 : # of spline tested
 - Large variety of EBL shapes allowed

τ also depends on EBL evolution : evolution hypotheses needed

 Evolution function extracted from FR08
 No significant impact on results compared to simple effective scaling

Similar model independent approaches :

Mazin & Raue (2007) A&A 471(2), 439-452. Meyer et al. (2012) A&A, 542, A59. Biteau & Williams (2015), arXiv:1502.04166

Data sample : high significance H.E.S.S. blazars

- Cut on significance >10 σ detection with H.E.S.S.
- 14 data sets with 6 sources (for now !)
- Redshift coverage : z from 0.071 to 0.188

Only H.E.S.S. phase-I data used here

Preliminary results

- The shape of the EBL is accessible
 - Grey area : combined statistical contour with no assumptions on shape and normalization !
 - Systematics : largest contour including x-check analysis + relative exclusion of several data sets

Summary and perspectives

 This study : a 1st model-independent comprehensive study of the EBL with H.E.S.S.

Final study includes :

- More sources :
 - Stronger collective signal
 - Better redshift coverage
- H.E.S.S. II data :
 - More leverage on short wavelength range
- Better assessment of systematics errors
 - Adaptive grids : from coarse to fine
 - Other intrinsic spectral shapes assumptions
 - Influence of EBL evolution
- Related study on intrinsic spectra of blazars

Coming soon...

