

Marlene Doert, David Paneque, Koji Noda, Gareth Hughes, Luis Reyes for the MAGIC, VERITAS, Fermi-LAT and NuSTAR collaborations and GASP-WEBT, F-GAMMA

October 26th 2015 - TeVPA 2015 - Kashiwa, Japan

Technische Universität Dortmund also at Ruhr-Universität Bochum

> **RAPP** Ruhr Astroparticle-Plasma Physics Center

t

RUHR UNIVERSITÄT BOCHUM

dortmund

technische universität

Why study the Markarians?

Studying blazars poses two big observational challenges:

- 1) Emission over very broad energy range (radio to VHE gamma-rays)
- 2) Variability on very different time-scales
- Excellent broad-band coverage and temporal coverage is needed
- → Need campaigns which run over many years
- → Limited resources -> need to focus on few targets

Markarians:

Bright

Near-by

- \rightarrow Sample the SED with every "shot"
 - \rightarrow Imaging with VLBA possible down to <0.1pc
 - → Minimal effect from EBL absorption
- No strong BLR \longrightarrow Less additional uncertainties (than in FSRQs)

-> Excellent laboratories to study the nature and behavior of blazars

The campaigns

RUB

2009

1st campaign with Fermi-LAT 4.5 months, every ~5 days >30 instruments, radio to VHE optical polarisation (Steward O.)

VLBA coverage

2012

1st campaign with FACT as monitoring instrument

including also GASP-WEBT and F-GAMMA 2013

Marlene Doert

1st campaign with NuSTAR also 1st time use of LIDAR corrected VHE data (MAGIC telescope data)

MAGIC LIDAR to improve data quality

RUB

- 1) Correction of data taken under non-perfect atmospheric conditions
- 2) Recovery of data taken under adverse conditions
- Strategy presented in ICRC 2013 (Fruck et al., #1054)
- Transmission $\tau(h)$ vs. altitude h 1st-order correction estimates E: $E_{corr} = E_{est} / \overline{\tau}$
- Effective area and energy corrected event-wise

Marlene Doert

Recovered ~10 hrs of crucial data during flaring activity 1st time LIDAR used in a physics paper with IACT observations Noda et al. (arXiv:1508.05026), Furniss et al. (arXiv:1509.04936)

Results: Flaring activity

Flares seen in all campaigns

2009:

Two very different VHE flares:

1st flare:

- t_{var}<1hr (Pichel et al. 2011)
- No flaring in X-rays, but strong spectral hardening
- Coinciding with polarization changes

2nd flare:

- t_{var} ~ 1 day
- Contemporaneous X-ray flare

Results: Flaring activity

2012: Extreme flare:

- Seen with MAGIC, FACT and XRT
- Flux > 10 C.U. (above 1 TeV)
- t_{var}~ several hrs
- Followed by a larger X-ray flare seen by Swift-XRT, but no simultaneous VHE observation
- Excellent agreement between MAGIC and FACT above 1 TeV
- Very hard VHE and X-ray spectra over entire campaign!
 - -> "extreme blazar" behavior

RUB tu Marlene Doert

Results: Flaring activity

2013:

Flaring state over ~4 days:

- ToO triggered by high rate in Swift/XRT
- Observed over 4 consecutive nights with MAGIC (& Swift/XRT). Flux up to ~2.5 Crab, t_{var} ~ few hours
- MAGIC data were LIDAR corrected
- Correlation found between VHE (MAGIC) and X-ray (NuSTAR & Swift/XRT)

ApJ **812** (1) 65, 22 pp. (2015) arXiv:1509.04936

RUB tu

Marlene Doert

Results: Variability

Fractional variability:

- Roughly increasing with energy in 2009 and 2012
- 2013: double bump structure more similar to Mrk 421.

Results: Spectral Energy Distribution

RUB

2009

Two flaring SEDs

- 1st flare: large increase in IC peak, Swift/XRT spectrum shows hint for upward curvature!
- 2nd flare: shows more "regular" flaring behaviour for Mrk 501, increase in X-rays and in VHE.

Modeling:

- UV, X-rays, HE and VHE gamma-rays taken into account
- radio points serve as upper limits, optical and IR not taken into account (dominated by host galaxy)

Modeling performed using a **novel grid scan method** with SSC models (used model by Takami 2011, one and two independent zones)

Grid Scan Method:

- Define generous parameter ranges
- Define step size
- Produce model curve for each point on parameter grid
- Evaluate agreement with data for each model based on the X²
- Apply additional constraints: $u_e/u_B < 10^3$, $T_{var.min} = (1+z) R / (c \cdot \delta)$

Aims:

- Less bias on chosen parameter regions!
- Find several SSC models which best match the data set
- Find interesting regions in the model parameter space
- Study degeneracy of model parameters

2009

Modeling performed using a **novel grid scan method** with SSC models (used model by Takami 2011, one and two independent zones)

Producing the models

One-zone SSC:
 EED with 2 spectral breaks

 —> 11 free parameters!

coarse grid					
two-zone		γ_{min}	γ_{max}	γ_{break}	α_1
min		1×10^{2}	1×10^{5}	1×10^{4}	1.7
max		1×10^{6}	7×10^{8}	1×10^{7}	2.3
# steps		5	4	7	7
spacing	;	log	log	log	lin
a	¥2	n _e	B/mG	$\log(\frac{R}{cm})$	δ
2	.0	100	5	14.0	1
4	.8	1×10^{6}	250	18.0	60
8		9	9	9	7
lin		log	log	lin	log

• Two-zone SSC:

First zone fixed to quiescent emission model (Abdo et al 2011), define second zone from grid scan with 1 spectral break in EED

→ 9 free parameters!

- Tens of millions of SSC model calculations
- Cluster computing necessary!

Results: Spectral Energy Distribution

2009

1st flare: very bad fit probability (derived from χ^2): P < 10⁻¹⁰

no further investigation because of fast variability and no strict data simultaneity

2nd flare:

2009 2nd flare:

Results from two-zone scenario are promising:

Choose interesting parameter regions for a second iteration of the scan, with more narrow ranges and a finer step size

Go to: histograms of best models in each model parameter, e.g. in γ_{break} : γ_{preak} : γ

Results: Spectral Energy Distribution

RUB tu

Results: Spectral Energy Distribution

RUB tu

2009 2nd flare:

Degeneracy of model parameters

Again: study histograms of best models in the space of model parameters

Results: Spectral Energy Distribution

RUB

2009 2nd flare:

Degeneracy of model parameters

Some model parameters are rather constrained,

e.g. γ_{break} ,

some still show a broad distribution, e.g. γ_{max} or n_e

Conclusions

Markarians: excellent lab to study blazars.
 MWL campaigns: excellent method to learn more.
 We get an unbiased picture and we often get surprises.

- Gain in new technologies/instruments achieves much better campaigns from year to year (FACT, NuSTAR, LIDAR correction)
- Lesson learned: Mrk's are far from being completely understood.
 They show different faces and new features each time.
- We saw an extreme shift of the SED of Mrk 501 in 2012.
 Maybe "extreme blazar" is rather a state than a class.
- We can model the SED of Mrk 501 with Doppler factor of 5 and with a strong high energy component
 → Surprises if we search with less bias.
- Synchrotron Self Compton models work well, but we require well-sampled SEDs to really constrain the parameter space!