Update on Singlet DM with GAMBIT

Christoph Weniger
For the GAMBIT collaboration
TeVPA, Tokyo, 29 Oct 2015
Global and Modular BSM Inference Tool
(see earlier talk by Pat Scott for more details)

The situation
• We have a massive amount of data (LHC, EWPT, Flavor, DM searches, ...)
• There are many theoretical ideas for BSM physics (MSSM, NMSSM, extended Higgs sectors, effective field theories, axions, axion-like particles, sterile neutrinos, ...)

The problem
• How confront a maximal number of BSM scenarios with the most accurate data in an efficient way?
• How to avoid reinventing the wheel over and over again (coding up the same likelihood functions, models, etc, instead of reusing codes)?

Our solution: GAMBIT
• Most accurate and massively parallelized likelihood functions
• Fast scanning algorithms
• Modular, extensible, can be used for many models
“DarkBit” is the GAMBIT unit that is responsible for all DM-related calculations.

Design principles

- Wherever possible, we use functionality of existing codes (DarkSUSY, micrOMEGAs), which are imported as backends.
- Where needed, we implement:
 - Our own new backends (e.g. Fermi LAT, XENON/LUX, IceCube)
 - GAMBIT native code (e.g. cascade annihilations)
 - Patches to improve backend functionality (e.g. DS SLHA reader, parallelized RD calculation)

Group members

Torsten Bringmann, Jan Conrad, Jonathan Cornell, Lars Dal, Joakim Edsjö, Antje Putze, Chris Savage, Pat Scott, Christoph Weniger, Martin White

(GAMBIT in total: about 30 members)
DarkBit - An (incomplete) overview

DarkBit Module

- pMSSM
- CMSSM
- Singlet DM
- Cascade decays
- Gamma/Nu yields
- Nucleon couplings
- Boltzmann solver
- Eff. ann. rate
- "Process Catalog"
- -ln(L) indirect
- -ln(L) direct
- -ln(L) relic

Backends

- DarkSUSY
 MSSM BRs,
 Gamma-yields,
 Relic density,
 Boltzmann solver
- micrOMEGAs
 Relic density,
 Gamma-ray yields
- NuLike
 IceCube
- GamLike
 Fermi, HESS & CTA
- DDcalc
 Xenon, LUX
GamLike provides the most common gamma-ray likelihoods with a unified interface.

Limits from dwarf spheroidal galaxies
- Fermi LAT results available as tabulated likelihoods
 \[\mathcal{L}(\langle \sigma v \rangle, m_\chi, dN/dE, \vec{J}) = \mathcal{L}(\vec{\phi}, \vec{J}) \]
 \[\phi_i = \frac{\langle \sigma v \rangle}{m_\chi^2} \int_{\Delta E_i} dE' \frac{dN}{dE_i} \]
- Internal correct treatment of J-value uncertainties by marginalization or profiling
- Likelihood for 15 dwarf spheroidal galaxies (pass 7 & pass 8)

Galactic center likelihood (Galactic center excess only)
- Based on Calore+ 2014 results, includes correlated systematic errors, assuming all bulge emission is DM signal:
 \[-2 \ln \mathcal{L} = \sum_{ij} (\phi_i - f_i) \Sigma_{ij}^{-1} (\phi_j - f_j) \]
- Assuming that all emission from Galactic bulge comes from DM annihilation

Also: CTA projected limits, HESS Galactic halo limits
Main features

• Event-level unbinned likelihood functions for IceCube-79 and projected IceCube-86 results for Sun observations (in cooperation with IceCube collaboration)

\[\mathcal{L}_{\text{unbin}} = \mathcal{L}_{\text{num}}(n_{\text{tot}}|\theta_{\text{tot}}) \prod_{i=1}^{n_{\text{tot}}} (f_S \mathcal{L}_S,i + f_{BG} \mathcal{L}_{BG},i) \]

• Strategy: Precompute partial likelihoods for each event, then reweight according to nu spectrum at Earth

• Fully exploits spectral and directional information

• Fast and efficient, thanks to tabulated responses

• Neutrino yields at Earth can be calculated with DarkSUSY, or any other backend if desired

→ Fully model independent!
Direct detection likelihoods with *DDcalc*

Overview
- Accurate direct detection likelihoods for the most relevant experiments
- To be released as command line tool and with GAMBIT interface
- Implemented up to now:
 - XENON 100 2012, LUX 2013, SuperCDMS 2014, SIMPLE 2014 and more to come (e.g. Darwin-Xe and Darwin-Ar)
- Within GAMBIT, consistent treatment of hadronic couplings, quark masses and halo parameters as nuisance parameters
Effective annihilation rate

\[W_{ij} = 4p_{ij} \sqrt{s} \sigma_{ij} = 4\sigma_{ij} \sqrt{(p_i \cdot p_j)^2 - m_i^2 m_j^2} = 4E_i E_j \sigma_{ij} v_{ij} \]

\[W_{\text{eff}} = \sum_{ij} \frac{p_{ij} g_i g_j}{p_{11} g_1^2} W_{ij} \]

Overview

- Effective annihilation yields can be obtained directly from backends or derived from process catalog
- Boltzmann solver comes from DarkSUSY (but can be replaced by anything else)
The simplest DM model

A real scalar field, coupled to the SM via the Higgs portal, is arguably the most simple WIMP dark matter model on the market.

Silveira & Zee 1985; McDonald 1994; Burgess+ 2001; Cline+ 2013; ...

The model

- Simple Lagrangian (assuming Z_2 symmetry for DM stability)

\[
\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} |\partial_\mu S|^2 + \frac{1}{2} \mu_S^2 S^2 + \frac{1}{2} \lambda_{hS} |H|^2 S^2
\]

- Two free parameters:
 - DM mass
 \[
m_S = \sqrt{\mu_S^2 + \frac{1}{2} \lambda_{hS} v_0^2}
\]
 - DM coupling strength λ_{hS}
Signatures and experimental constraints

Scalar singlet dark matter features most of the typical WIMP indirect and direct signals, with only weak limits from LHC.

Signatures & Experiments:
• Annihilation into (mostly) W-boson and b-quark pairs ↔ Fermi LAT dwarf Spheroidal, HESS Galactic center
• Spin independent coupling to nuclei ↔ XENON-100 & LUX
• Higgs decay into scalar singlet, if kin. allowed ↔ Higgs inv. width
• Freeze-out relic density ↔ Planck CMB results

\[\Omega_S = \Omega_{DM} \]
Nuisance parameters

Often, the model parameters are accompanied by a much larger number of nuisance parameters, which need to be taken into account to obtain credible and robust results. Singlet dark matter is ideal to illustrate this.

Model parameters (2)
- Dark matter mass
- Higgs portal coupling

Nuisance parameters (>10)
- Local DM density & velocity distribution
- Dark matter content in dSphs
- SM masses and couplings (Higgs mass, Fermi constant, masses and mass ratios of light quarks, ...)
- Hadronic matrix elements
- Instrumental sensitivities ...

Statistical treatment
- Profiling (Frequentist) \(\mathcal{L}(\hat{\theta}) = \max_{\hat{n}} \mathcal{L}(\hat{\theta}, \hat{n}) \)
- Marginalization (Bayesian) \(\mathcal{L}(\hat{\theta}) = \int d\hat{n} \mathcal{L}(\hat{\theta}, \hat{n}) P(\hat{n}) \)
Global scans – Singlet DM

Free parameters (2)
- DM mass and coupling

Likelihoods
- Relic density (DarkSUSY, Planck)

(scanner: MultiNest)

Results
- S-channel Higgs resonance clearly resolved
- Threshold effects for different annihilation channels
- Perfectly reproduces results from e.g. Cline+ 2013
Global scans – Singlet DM

Free parameters (5)
- DM mass and coupling
- Higgs mass, strong and weak couplings

Likelihoods
- Relic density (DarkSUSY, Planck)

Marginalization over SM parameters (Higgs mass)
- Resonance region is smeared out
- Simple example for fine-tuning penalization by scan over Higgs mass

\[
\mathcal{L}(\theta) = \int dm_H P(m_H) \mathcal{L}(\theta, m_H)
\]

Fine-tuning between \(\lambda_{S_h} \) and \(m_S \)
- effectively panelized (only for posterior!)

PRELIMINARY

29 Oct 2015

C. Weniger - GAMBIT Update on Singlet DM
Global scans - Singlet DM

Free parameters (2)
- DM mass and coupling

Likelihoods
- Relic density (DarkSUSY, Planck) as upper limit
- XENON-100 & LUX 2013

Note
- Using observed DM only as upper limit visualizes the impact of DD constraints on the full parameter space
Global scans – Singlet DM

Free parameters (7)
- DM mass and coupling
- Quark masses & ratios, nucleon couplings

Likelihoods
- Relic density (DarkSUSY, Planck) as upper limit
- XENON-100 & LUX 2013

Results
- Marginalization over nuisance parameters can lead to weakening or strengthening of constraints, depending on the adopted parameters.
Conclusions

- DarkBit ships with numerous accurate likelihood functions
 - Direct detection (XENON 100, LUX)
 - Gamma rays (Fermi LAT, HESS, CTA)
 - Neutrinos (IceCube-79)
 - Relic density (Planck)
- General framework to calculate annihilation yields
 - New code for automated calculation of cascade decay spectra
- Model independent (currently implemented: various MSSM flavours, SingletDM)
- Backends to major codes in the field (DarkSUSY, micrOMEGAs)
- DarkBit allows marginalization over a large number of DM-related nuisance parameters – these will effect the results as demonstrated for the simple case of Singlet DM
is coming.

Thank you!