

Separating Electron, Proton and Gamma-ray induced Air Showers

with Imaging Atmospheric Cherenkov Telescopes

T.Edwards, R.D.Parsons, W.Hofmann

- > Increased Sensitivity of Imaging Atmospheric Cherenkov Telescopes
- > Extended sources and diffuse emission studies

Shower Development

Shower Development

Direct Cherenkov

Simulated electron shower image at 100 GeV

Direct Cherenkov component detected at the head of the simulated shower

Electrons vs Gamma rays

Discriminating Variable 1

Intensity Image Slices

EM Shower Image

- > Image is separated into slices along the shower axis
- > Corresponding intensity is found

Discriminating Variable II

Intensity Lengths

Length along the camera where a certain percentage of the integrated intensity lies

electrons lie closest to the source position due to image shift and DC light

Protons are furthest due to the inaccurate source position reconstruction

Discriminating Variable III

I2

I1

Intensity Ratios

The ratio of the intensity at the start of the image is taken over the intensity of the remaining image.

Multi Variate Analysis using Monte Carlo events

Variables Trained with MVA

Electron, gamma ray and proton Monte Carlo events

Protons

— Diffuse Gamma-rays

Variables Trained with MVA

Electron, gamma ray and proton Monte Carlo events

— Electrons

- Protons
- Diffuse Gamma-rays

Variables Trained with MVA

Electrons

Protons

Electron, gamma ray and proton Monte Carlo events

Comparison to Data

Background events

AX-PLANCK-INSTIT FÜR KERNPHYSIK

Best Fit Model

Three step fitting procedure

- Fit proton and electromagnetic components
- Fix proton component, fit electron and gamma ray contributions
- Data affected by telescope optical efficiency
 - correction factor

Best Fit Model Individual Components

EXCESS Events

95% Gamma-rays1% Electrons4% Protons

Source (ON) Region86%Gamma-rays4%Electrons10%Protons

Background (OFF) Region

3%	Gamma-rays
33%	Electrons
64%	Protons

Tanya Edwards

Using All Classifiers

- > 3D profile combines all three classifying distributions
- All events currently accepted as gamma rays with HESS are shown
- Making a cut allows
 57% of remaining
 protons to be rejected
 while keeping 86% of
 gamma rays

- > Separation of electron, proton and gamma-ray events is possible on a statistical basis
- > Analysis fits data well with comparable ratio of protons to electrons in observation regions
- > Cuts can be made to reduce background, with 57% of gamma-like protons rejected at 86% signal efficiency
- > Next steps are to apply analysis to scientific studies