# Askaryan Radio Array (ARA)

Michael DuVernois Wisconsin IceCube Particle Astrophysics Center (WIPAC) University of Wisconsin—Madison



## **PHYSICS**

#### **Cosmic Rays and Neutrino Sources**

Gaisser 2005

Cosmic rays exist at highest energies:

#### The puzzle

No nearby (<50Mpc) sources observed. More distant sources are not observable in cosmic rays due to collisions with microwave background.

Neutrinos above 10<sup>17-19</sup> eV, GZK or cosmogenic neutrinos are at some level guaranteed.

However, fluxes will be small, requires very large detectors

$$p + \gamma_{\rm CMB} \to \Delta^+ \to p + \pi^0$$
  
 $\to n + \pi^+$ 



3



Energies and rates of the cosmic-ray particles

### Neutrinos as messengers



Study of the highest energy processes and particles throughout the universe requires PeV-ZeV neutrino detectors

#### To **"guarantee"**EeV neutrino detection, **design for the GZK neutrino flux**

Existence of extragalactic neutrinos inferred from CR spectrum, up to  $10^{20}\,\text{eV},$  and similarly, Galactic up to  $10^{18}\,\text{eV}$ 

Need gigaton (km<sup>3</sup>) mass (volume) for TeV to PeV detection, and teraton at  $10^{19}$  eV

Neutrino detection associated with EM sources will ID the UHECR sources

"EM Hidden" sources may exist, visible only in neutrinos.

Neutrino eyes see farther (z>1), and deeper (into compact objects), than gamma-photons, and straighter than UHECRs, with no absorption at (almost) any energy

#### The cosmic energy frontier, 10<sup>7</sup> to 10<sup>11</sup> GeV Cosmogenic or *GZK* neutrinos



6

#### The cosmic energy frontier, 10<sup>7</sup> to 10<sup>11</sup> GeV Cosmogenic or *GZK* neutrinos





### **ASKARYAN EFFECT**

Detection mechanism proposed by G. Askaryan (1962): Measure the coherent RF signal generated by neutrino interaction in dielectric media (such as ice)





## Askaryan Effect

In electron-gamma shower in matter, there will be ~20% more electrons than positrons. Compton scattering:  $\gamma + e^{-}_{(at rest)} \rightarrow \gamma + e^{-}$ Positron annihilation:  $e^{+} + e^{-}_{(at rest)} \rightarrow \gamma + \gamma$ 

In dense material  $R_{Moliere} \sim 10$ cm.  $\lambda << R_{Moliere}$  (optical case), <u>random phases</u>  $\Rightarrow P \propto N$  $\lambda >> R_{Moliere}$  (microwaves), <u>coherent</u>  $\Rightarrow P \propto N^2$ 

 $\frac{dP_{CR}}{dv} \propto v dv$ 

# Validation at SLAC



# Natural target material?

- Lunar regolith (20m attenuation length)
   Parkes Telescope; GLUE; WSRT; ...
- Ice (100-1500m attenuation lengths)
   Forte (satellensaltedite); ANITA (balloon); ARA
- Salt (100-500m attenuation lengths) SalSA (proposed,)
- Air is too thin
- Water is RF lossy, natural, outdoor, sand (as opposed to pure silica) is also lossy



## **INSTRUMENTATION**

#### 10<sup>7</sup> to 10<sup>11</sup> GeV: Radio ice Cherenkov detection

Askaryan Radio Array (ARA) heritage: Existing and previous instruments using radio in Polar ice Members of all three efforts are currently involved with ARA



• array of single dipole antennas deployed between 100 and 300m near the Pole

• much of the instrumentation was deployed in AMANDA holes

 $\cdot \operatorname{Pioneered}$  technique in the ice

# Special radio detectors and pulsers in IceCube



# ANITA



balloon payload of horn antennas
surveys the ice cap from high altitude for RF refracted out of the ice
→ high fidelity data acquisition system >Gs/sec waveform capture

# **ARA-** Collaboration

• ARA is an international Collaboration

THE UNIVERSITY

MADISON

- 14 institutions
- ~50 authors



P. Allison,<sup>1</sup> J. Auffenberg,<sup>2</sup> R. Bard,<sup>3</sup> J. J. Beatty,<sup>1</sup> D. Z. Besson,<sup>4</sup> S. Böser,<sup>5</sup> C. Chen,<sup>6</sup> P. Chen,<sup>6</sup> A. Connolly,<sup>1</sup> J. Davies,<sup>7</sup> M. DuVernois,<sup>2</sup> B. Fox,<sup>8</sup> P. W. Gorham,<sup>8</sup> E. W. Grashorn,<sup>1</sup> K. Hanson,<sup>9</sup> J. Haugen,<sup>2</sup> K. Helbing,<sup>10</sup> B. Hill,<sup>8</sup> K. D. Hoffman,<sup>3</sup> M. Huang,<sup>6</sup> M. H. A. Huang,<sup>6</sup> A. Ishihara,<sup>11</sup> A. Karle,<sup>12</sup> D. Kennedy,<sup>4</sup> H. Landsman,<sup>2</sup> A. Laundrie,<sup>2</sup> T. C. Liu,<sup>6</sup> L. Macchiarulo,<sup>8</sup> K. Mase,<sup>11</sup> T. Meures,<sup>9</sup> R. Meyhandan,<sup>8</sup> C. Miki,<sup>8</sup> R. Morse,<sup>8</sup> M. Newcomb,<sup>2</sup> R. J. Nichol,<sup>7</sup> K. Ratzlaff,<sup>13</sup> M. Richman,<sup>3</sup> L. Ritter,<sup>8</sup> B. Rotter,<sup>8</sup> P. Sandstrom,<sup>2</sup> D. Seckel,<sup>14</sup> J. Touart,<sup>3</sup> G. S. Varner,<sup>8</sup> M. -Z. Wang,<sup>6</sup> C. Weaver,<sup>12</sup> A. Wendorff,<sup>4</sup> S. Yoshida,<sup>11</sup> and R. Young<sup>13</sup>

#### (ARA Collaboration)

<sup>1</sup>Dept. of Physics, Ohio State Univ., Columbus, OH 43210, USA.
 <sup>2</sup>IceCube Research Center, Univ. of Wisconsin- Madison WI 53703.
 <sup>3</sup>Dept. of Physics, Univ. of Maryland, College Park, MD, USA.
 <sup>4</sup>Dept. of Physics and Astronomy, Univ. of Kansas, Lawrence, KS 66045, USA.
 <sup>5</sup>Dept. of Physics, Univ. of Bonn, Bonn, Germany.
 sics, Grad. Inst. of Astrophys., & Leung Center for Cosmology and Particle Astrophysics, National Taiwan Univ., Taipei, Taiwan.
 <sup>7</sup>Dept. of Physics and Astronomy, Univ. College London, London, United Kingdom.
 <sup>8</sup>Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, HI 96822, USA.
 <sup>9</sup>Dept. of Physics, Univ. of Wuppertal, Wuppertal, Germany.
 <sup>10</sup>Dept. of Physics, Univ. of Wuppertal, Wuppertal, Germany.
 <sup>12</sup>Dept. of Physics, Univ. of Wisconsin Madison, WI, USA.
 <sup>13</sup>Instrumentation Design Laboratory, Univ. of Laware, Newark, DE 19716.

















ULB UNIVERSITÉ LIBRE DE BRUXELLES

#### 10<sup>7</sup> to 10<sup>11</sup> GeV: Radio ice Cherenkov detection Askaryan Radio Array (ARA)

- a very large radio neutrino detector at the South Pole

Ref: Allison et al., Astropart.Phys. 35 (2012) 457-477, arXiv:1105.2854 (Design and performance paper)

#### Scientific Goal:

- Discover and determine the flux of highest energy cosmic neutrinos.
- Understanding of highest energy cosmic rays, other phenomena at highest energies.

#### Method:

Monitor the ice for radio pulses generated by interactions of cosmic neutrinos with nuclei of the 2.8km thick ice sheet at the South Pole



Areal coverage: ~150km^2

#### 10<sup>7</sup> to 10<sup>11</sup> GeV: Radio ice Cherenkov detection

# ARA station geometry

Design goals and choices:

- Every station is a fully functioning detector.
- → Lower energy threshold: nearby events (300m) can be reconstructed.

Background rejection:

→ Embedded strings: Allow good vertex resolution and high vertical resolution for background rejection



# Why strings?

(rather than surface antennas)

- Acceptance: x2
  - Embedded detectors have larger acceptance due to shadowing caused by gradual change of index of refraction in the upper 200m of ice.
  - Gain at 200m depth compared to surface: > x2 event rate
- Background rejection:
  - Transient backgrounds, man made and natural come from surface!
  - Neutrino events generate vertex in the ice and the signal can be uniquely separated by basic event reconstruction.





#### ARA Station & Antenna Cluster



# Signal Chain

- Physics: Neutrino interacts in the ice, charged particles generate shower, Askaryan radio pulse
- Antennas: Radio pulse wave-front arrives, superimposed on thermal (background) noise
- LNA: Amplify the delicate signal with minimum additional noise, close to the antenna
- RFoF (transmitter & receiver): Transmit signal to the surface without cable distortions, and then return optical to electrical signal
- Trigger: Diode detectors ("square law") followed by combinatorial logic (e.g., 5/16 or in the future something more complex)
- Readout: Analog capacitor storage, triggered readout, digitization, transfer to station computer, fiber to IceCube Lab building, hard drive storage, & satellite to North



### **RECENT WORK**



## ARA field activities on the ice









## ARA field activities on the ice





2010-11: Test detector (TestBed, shallow) deployed
Deep calibration pulsers deployed with IceCube
2011-12: ARA1 prototype deployed: ~70m due to drill limitations
2012-13: Drill upgrade,



Built and Deployed two more stations, now at 200m depth **3 stations Comparable to sensitivity of IceCube at 10<sup>18</sup>eV** 2013-14: Calibration activities 2014-15: Calibration activities, repairs on ARA1 2015-16: Calibration activities, another repair on ARA1



#### IceCube Laboratory

ARA equipment base and shop (former IC equipment) \

IceCube infrastructure helpful as a lab to host the ARA DAQ and facilitate ARA operations (similar data flow mechanisms)

Two IceCube winter-overs



## First results & summary



26

# The Future...

- NSF funding has been slow/difficult
- Three similar, competing projects (ARA, ARIANNA, GNO)
- Looking ahead for a four year deployment push to complete the ARA-37 design
  - Electronics updates
  - Better trigger algorithms
  - Data reduction at on-line & off-line
- Farther out, even larger detector in concert with the rest of Generation 2 IceCube



### **BACKUP SLIDES**

# ARA DAQ

- In-ice:
  - Notch filter at 450 MHz (anthropogenic noise)
  - Low noise amplifiers
  - Optical Zonu RF over fiber
- Surface:
  - Band filters: 150-850 MHz
  - IRS2 digitizing chip: sampling up to 4 GHz, 10 μs buffer
  - Trigger on 3 out of 8 antennas in 170 ns





#### Vpol calibration pulser event in ARA03

- Trigger rates:
  - ~ 5 Hz RF events
  - 1 Hz Calibration pulser
  - 0.5 Hz Forced software trigger

K. Mase @ ICRC: Calibration of the ARA front end, 1/8, 1136

## From the South to the North

- Filtering at Pole to reduce data volume
- ~80 GB/day/station -> 250 MB over satellite
- Remainder is picked up by hand once a year
- Currently 3 filters:
  - Nchannel filter: calculate threshold from recorded waveforms, allow events that exceed threshold
  - TimeSequence: calculate compatibility of hit timing with plane wave
  - Minbias: random selection of 1 event per 200



## Simulation: AraSim

- Official collaboration Monte Carlo simulation package for assessing sensitivity and general use
- Simulated events written in data format for direct comparison
- Simulates full trigger and signal chain for neutrino events detected by ARA stations
- Takes into account:
  - Index of refraction model
  - Calibrated noise simulation
  - Antenna and electronics responses
  - Trigger model



## First Analyses: ARA 2/3



- System of equations based on arrival time differences from correlation
- Causality for 1 antenna:  $c^{2}(t_{v} - t_{i})^{2} = (x_{v} - x_{i})^{2} + (y_{v} - y_{i})^{2} + (z_{v} - z_{i})^{2}$
- Difference for 2 antennas:



 $x_{v} \cdot 2dx_{ij} + y_{v} \cdot 2dy_{ij} + z_{v} \cdot 2dz_{ij} - t_{v} \cdot 2c^{2}dt_{ij} = r_{i}^{2} - r_{j}^{2} - c^{2}\left(dt_{i,ref}^{2} - dt_{j,ref}^{2}\right)$ 

- Linear algebra: scan over t\_v, minimize residual  $\left\|\frac{b}{|b|} - \frac{A * v}{|A * v|}\right\|^2$ 



# First Analyses: ARA 2/3

- 2 stations, 10 months of data (2013)
- Cut on:
  - Reconstruction quality (residual)
  - TimeSequence algorithm
- No neutrino candidates, set upper limit with systematic errors
- Expected (total):
  - 0.1 neutrinos,
  - 0.02 background
- Further information:
  - ICRC proceedings: 1115
  - arXiv:1507.08991



# The final limit compared to ARIANNA limits and sensitivity

#### What is our sensitivity:

- Projected from the ARA2 trigger level of 2013: multiplied by (37/2)
   → for 37 stations 3.0\*(365/224): 3 years of 100% lifetime as opposed to 224 days collected in 10 months. (actually 220 for A3 and 228 A2)
- Included loss from semioptimized trigger settings <10%</li>
- Loss due to coincidences is partly included: Coincidences between 2 stations
- This is trigger level scaling! Analysis efficiency is NOT accounted for



# The final limit compared to ARIANNA limit



# The final limit and sensitivity (ARA only)



# The final limit with the trigger level (ARA only)



# Deployment setup









# Cutting main trench



# Hole qualifier









# Ice Attenuation Length

- Most radio transparent material on Earth!
- Depends on ice temperature. Colder ice at the top.
- Reflection Studies (2004) (Down to bedrock, 200-700MHz): "normalize" average attenuation according to temperature profile.





Besson et al. J. Glaciology, 51, 173, 231, 2005