

High Energy Cosmic Rays at the Pierre Auger Observatory after 10 years : results and future

Isabelle Lhenry-Yvon on behalf of the Pierre Auger Collaboration IPN Orsay, Université Paris XI, CNRS/IN2P3

The Pierre Auger Collaboration

460 collaborators 110 institutions from 17 countries

Argentina – Australia – Brazil – Colombia – Czech Republic – France – Germany – Italy – Mexico – Netherlands – Poland – Portugal – Romania – Slovenia – Spain – United Kingdom – United States

Outline

The Pierre Auger Observatory

Science case and characteristics

Results, towards the understanding of UHECR's

Spectrum,

Anisotropy

Mass composition

Hadronic models

Summary and future plans Auger Prime

Original AUGER Science Case

1. A precise reconstruction of the energy spectrum Is the GZK cutoff observed or challenged?

2. The **identification of primaries**, even if only **statistical**: proton, nuclei , or more exotic particles (gamma, neutrinos ?)

- Based on the air shower properties,
- Could give constrain to existing hadronic models

3. A systematic study of arrival directions Search for indication of anisotropies and existence of point sources

The Pierre Auger Observatory in Argentina

Coihueco

Coihu

Malargüe

os Leones

Surface detectors

1680 Cherenkov stations 1.5 Km spaced on a hexagonal grid Can detect shower up to 90° 100% duty cycle

Completed in 2008 Progressive data taking starting in 2004

> Aiming at understanding the origin of Ultra High Energy Cosmic Rays, the PAO associates the widest detection surface (3000 km²) together with the highest precision ever achieved

[km]

Los

Morados

l Salitral-P<u>to</u> irgen del Carmer

Salitral-Pto.0

Co. de las Cabri

Loma Amarilla Ea. Pamp

Present status of the Pierre Auger Observatory

LOW ENERGY EXTENSION (10¹⁷ - 3 10¹⁸ eV)

750 m ARRAY

Present status of the Pierre Auger Observatory

LOW ENERGY EXTENSION (10¹⁷ - 3 10¹⁸ eV)

AERA

750 m ARRAY

AMIGA MUON COUNTERS

The different AUGER data sets

energy estimator: S35

[월 19 [월 18 기 8

17

16

15

14

13

12

11

HYBRID

FD + \geq **1 SD 1500 station** Fully efficient: $E \approx 10^{18} \text{ eV}$ **HEAT + \geq 1 SD-750 station** Fully efficient $E \approx 10^{17} \text{eV}$

Energy measurement: EFD

SPECTRUM

Energy Reconstruction of Auger Events

SD vertical ($\theta < 60^{\circ}$)

Energy estimator S(1000):

Signal at 1000 m from lateral profile

S(1000) is θ dependent due to attenuation in atmosphere

-> use of Constant Intensity Cut (CIC)

In case of SD 750m array: S(450) S35

SD horizontal al $(62 < \theta < 80^\circ)$

Energy estimator : N₁₉

N₁₉: relative number of muons at ground w.r.t. the density of muons of the reference distribution:

 $\rho_{\mu,19}$ reference profile from parameterization of muon density at ground (10¹⁹ eV p QGSJetII-03)

N₁₉ is not θ dependent (already included in $\rho_{\mu,19}$)

Calibration of AUGER data sets

For each SD data , the energy estimator is calibrated with FD energy with hybrid data set

Cross correlation of the SD energy estimators (S) with the FD energy

$$E_{FD} = A * S^{B}$$

Detector	E	N (E>E
Hybrid FD+SD	1	~10000
SD 1500m (0°-60°)	3	~100000
SD 1500 m (60°-80°)	4	15000
SD 750m (0°-55°)	0.3	6000
HEAT +SD	0.1	60000

The FD defines all energy scales -> systematic uncertainty _ 14%

Energy spectrum over 3 decades in energy

4 data sets combined : SD 750 m FD (hybrid) SD 1500 m (0-60°), SD 1500 m (60-80°)

≈ 200 000 events, ≈ 50000 km2 sr yr exposure, FOV: -90°, +25 in δ

AUGER/Telescope Array spectra

Discrepancy can be accommodated within a systematic energy shift , but not at the highest energies

Under study by UHECR spectrum WG(TA/Auger) (I.C Maris, UHECR2014)

ANISOTROPIES

The search for anisotropies to track the origin of cosmic rays

At small and intermediate scale :

For light particles at the largest energies we expect small deviation from magnetic fields (a few degrees) :

- A clear anisotropie would reveal a large fraction of protons in the high energy flux

- Possible CR astronomy ??

-> Intrinsic correlations or correlation with close objects from catalogs

At large scale :

- diffusion & escape of galactic CR below EeV energies can generate dipole pattern

- A change in the large scale anisotropy could sign the galactic/extra galactic transition (at the ankle ?)

-> Search of dipole on different energy ranges

Search of small/intermediate scale anisotropies in the arrival directions of the most energetic cosmic rays $< 80^{\circ}$

Blind search for excesses

Scan on parameters: compute the obs./exp number of events in each circular window for: E₄ \in [40;80]EeV in I EeV steps, $\Psi \in [I; 30]$) in I^o steps

Li-Ma significance map in 12° circles; largest excess 4.3σ , Ethresh = 54 EeV, 18° from CenA; Post-trial probability (from simulations) 69%,

All excess found are compatible with isotropy.

Search of small/intermediate scale anisotropies in the arrival directions of the most energetic cosmic rays $< 80^{\circ}$

Search of correlations with astrophysical structures Gal-Xgal planes, 2MRS galaxies, Swift-BAT AGNs, jetted radio galaxies, CenA; Scan over angles, E_{thresh}, luminosity for AGNs and radio galaxies.

Ψ

Large scale anisotropies

Auger data set : ≈ 70000 events with E>4 EeV and ৩ < 80°, 85% sky coverage Modified Raleigh or East-West analysis on 1500 m and 750 m arrays dataset Auger/TA :≈ 17000 Auger events, ≈ 2500 TA events with E>10 EeV, Full sky coverage

Spherical harmonic analysis

AUGER/TA Dipole Amplitude: 6.5 ± 1.9% (p=5x10⁻³) Pointing to (a, d) = (93°±24°, -46°±18°)

Indications of large-scale anisotropies of CRs at E > 8-10 EeV challenging the original expectations of isotropy at these energies

MASS COMPOSITION

Composition from FD longitudinal profile

Fe shower develop higher in atmosphere -> lower Xmax (~100g.cm-² avrg)

Observables sensitive to composition:

- Depth of shower maximum (<Xmax>);
- Elongation rate (d<Xmax>/dlogE);
- RMS of Xmax distribution at fixed energy:

Mass composition over 3 decades in energy-Xmax

- ✓ From a clean hybrid data set (strong anti-biais cuts), detector independent measurement
- ✓ Lastest Hadronic interaction MCs tuned to 7 EeV LHC data
- \checkmark New extended low energy range data down to 10¹⁷ with HEAT FOV

In agreement with TA when folded from the detector effect (as done in TA)

From X_{max} to primary mass <In (A)>

 $\langle \ln A \rangle = \ln 56 \frac{X_{max}^p - \langle X_{max} \rangle}{X_{max}^p - X_{max}^{Fe}}$

Similar trend with energy for both models : heavy, lighter heavier Also tests of models -> QGSJET II yields unphysical results

Spectrum and X_{max}

Combined fit of energy spectrum and Xmax using propagation models

Homogenenous distribution of of identical sources of p, He, N and Fe nuclei; 125 data points, 6 fit parameters: injection flux norm. and spec. index γ , cutoff rigidity R_{cut}, p/He/N/Fe fractions;

"Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp, prepared for submission to JCAP" (coming soon on arXiv)

\rightarrow Best fit with very hard injection spectra ($\gamma \le 1$).

V)

Neutrino and photon at EeV energies ?

Use observables from SD to select neutrinos or photons

MUONS IN SHOWERS AND HADRONIC MODELS

Muon in showers and hadronic models

Isabelle Lhenry-Yvon, TeVPA 2015, Kashiwa , 26-31 october

Muon content of very inclined showers and hadronic models

<Rµ> higher than MC iron predictions Tension between the Xmax and muon measurements

Deficit of muons in simulations beetween 30% and 80%

PRD91,032003,059901 (2015)

Muon production depth and hadronic models

Ln(A) deduced from X^{μ}_{max} are compared to ln(A) from X_{max} from FD

Values compatible within 1.5 σ for QGSJetII-04 incompatible at > 6 σ for Epos-LHC

PRD 90, 912012(2014), 019003 (2015)

SUMMARY AND FUTURE

Summary and open issues after 10 years of data taking and analysis

 \checkmark Clear flux suppression above 40 EeV(>20 s):

but GZK or end of acceleration power at the sources ?

 \checkmark Towards a heavier mass when going to the highest energies:

but statistics limited by FD only data

and SD composition data in tension with FD and(or) hadronic models

✓ Stringent photon source limit favor astrophysics source but no clear isotropy found at the highest energy : the hypothesis of few sources of light primaries is challenged

Need to select light primaries to do Cosmic ray astronomy

COMPOSITION MEASUREMENTS EVENT BY EVENT, UP TO THE HIGHEST ENERGIES, WITH THE LARGE SD STATISTICS IS ABSOLUTELY NEEDED !

Objective of Auger future upgrade, AUGER- Prime

Primary cosmic Ray Identification with Muons and Electron

Extended FD duty cycle Installation of a Scintillator Surface Detector (SSD) on top of each WCD Upgraded SD Electronics

Foreseen schedule

- PDR ready since April 2015
- EA planned for March 2016
- Data taking 2018-2024 (40 000 km² sr yr)

The SSD methodology

Sampling of the shower particles with two detectors having different responses to muons and electromagnetic particles.

 $S_{\mu,\text{WCD}} = aS_{\text{WCD}} + bS_{\text{SSD}}$

AUGER Prime Science Case

- 1. A precise reconstruction of mass dependant energy spectrum
- 2. The identification of primaries, event by event , up to the highest energies
- 3. A systematic study of arrival directions of an enhanced proton data sample

...to access the global picture of the origin of HECR and UHECR

Thank you

BACKUP SLIDES

Galactic neutron searches

Motivation:

- Neutrons of 1 EeV can reach us from ~ 9 kpc (<d> = 9.2 E[EeV] kpc)
- Produced by protons in pion-producing interactions with ambient photons, protons or nuclei, also producing gamma rays
- Travel without deflections
- Air showers indistinguishable from protons

Methods:

Blind search:

NO significant point-like (at the angular resolution) over-density found \rightarrow sources are extragalactic, or transient, or optically thin to escaping protons, or weak & densely distributed ApJ 760 (2012)

Search for point-like excess of EeV CRs around different stacked sets of sources (HESS, Fermi sources, X-ray binaries, pulsars, Galactic Plane and Galactic center, magnetars, microquasars, etc.):

NO candidate found with significant excess ApJL (2014) \rightarrow Flux (>1EeV) < 0.01 km⁻² yr⁻¹

σ_{p-air} cross-section for deep showers, rising with E, measured at $\sqrt{s} \sim 39$, 56 TeV.

FLUORESCENCE YIELD

Update of the absolute intensity of the 337 nm band (absolute normalisation of the wavelength spectrum)

Mass composition - Xmax

Change from a mixed/light composition to a heavier one

Changes in : Atmosphere, fluorescence yield, invisible energy, FD calibration Longitudinal profile fit (at ICRC2013)

Absolute fluorescence yield	-8.2%
New opt. eff.	4.3%
Calibr. database update	3.5%
Sub total (FD cal.)	7.8%
Likelihood fit of dE/dX	2.2%
Folding with point. spr. func.	9.4%
Sub total (FD prof. rec.)	11.6%
Invisible energy	4.4%
Total	15.6%

at $10^{18} \,\mathrm{eV}$

Still compatible with former uncertainty (22%)

Absolute fluorescence yield	3.4%	
Fluores. spectrum and quenching param.	1.1%	
Sub total (Fluorescence Yield)	3.6%	
Aerosol optical depth	3% ÷ 6%	
Aerosol phase function	1%	
Wavelength dependence of aerosol scattering	0.5%	
Atmospheric density profile	1%	
Sub total (Atmosphere)	3.4% ÷ 6.2%	
Absolute FD calibration	9%	
Nightly relative calibration	2%	
Optical efficiency	3.5%	
Sub total (FD calibration)	9.9%	
Sub total (FD calibration) Folding with point spread function	9.9%	
Sub total (FD calibration) Folding with point spread function Multiple scattering model	9.9% 5% 1%	
Sub total (FD calibration) Folding with point spread function Multiple scattering model Simulation bias	9.9% 5% 1% 2%	
Sub total (FD calibration) Folding with point spread function Multiple scattering model Simulation bias Constraints in the Gaisser-Hillas fit	9.9% 5% 1% 2% 3.5% ÷ 1%	
Sub total (FD calibration) Folding with point spread function Multiple scattering model Simulation bias Constraints in the Gaisser-Hillas fit Sub total (FD profile rec.)	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6%	
Sub total (FD calibration) Folding with point spread function Multiple scattering model Simulation bias Constraints in the Gaisser-Hillas fit Sub total (FD profile rec.) Invisible energy	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6% 3% ÷ 1.5%	
Sub total (FD calibration)Folding with point spread functionMultiple scattering modelSimulation biasConstraints in the Gaisser-Hillas fitSub total (FD profile rec.)Invisible energyStatistical error of the SD calib. fit	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6% 3% ÷ 1.5% 0.7% ÷ 1.8%	
Sub total (FD calibration)Folding with point spread functionMultiple scattering modelSimulation biasConstraints in the Gaisser-Hillas fitSub total (FD profile rec.)Invisible energyStatistical error of the SD calib. fitStability of the energy scale	9.9% 5% 1% 2% 3.5% ÷ 1% 6.5% ÷ 5.6% 3% ÷ 1.5% 0.7% ÷ 1.8% 5%	

FD uncertainties propagate to the SD energies

TOTAL ≈ 14% ~ independent of energy

Mass composition from SD - MPD (Muon Production Depth)

Data selection: θ >55 °, traces from tanks between 1700 and 4000m only to avoid EM contamination

Mass composition from SD - MPD

- Novel approach to study longitudinal profile
- Agree with conclusion of Xmax

(but compatible with constant composition)

 Needs to be extended to more data (find methods to measure muons directly)

Interpreting X_{max} and X^µ_{max}

Phys Rev D90(2014)012012

Data are not consistently reproduced by models

InA

Muon deficit in inclined showers

Rµ is N₁₉, the estimated number of muons, corrected from hadronic model dependency (<3%)

Muon numbers predicted by models are under-estimated by 30 to 80% (20%systematic) arXiv:1408.1421v2

Mass composition - from Xmax to InA

 $\begin{array}{ll} \langle X_{\max} \rangle \simeq & \langle X^p_{\max} \rangle - D_p \langle \ln A \rangle & \langle \ln A \rangle = \sum f_i \ln A_i \\ \sigma (X_{\max})^2 \simeq & \langle \sigma_i^2 \rangle + D_p^2 \ \sigma (\ln A)^2 & \sigma (\ln A)^2 = \langle (\ln A)^2 \rangle - \langle \ln A \rangle^2 \end{array}$

D_p elongation rate < σ i> mass-averaged fluctuations

Average composition <InA> = 4 pure Fe <InA> ~ 2 50%Fe 50% p <InA>=0 pure p

Dispersion of masses at ground (source or propagation) σ(lnA)=0 pure p or Fe σ(lnA) ~ 4 50%Fe 50% p

- <In A > minimum in ankle region
- Energy evolution common to all models <InA> increasing from light to medium
- The mix include intermediates species