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Dark matter halo

I Very little is known about the details of the dark matter (DM) halo
in the local neighborhood.⇒ significant uncertainty when
interpreting data from direct detection experiments.

I Usually the Standard Halo Model is assumed: isothermal sphere
with an isotropic Maxwell-Boltzmann velocity distribution.

I local DM density: ρχ ∼ 0.3 GeV cm−3

I typical DM velocity: v̄ ' 220 km/s

I Numerical simulations of galaxy formation predict dark matter
velocity distributions which can deviate from a Maxwellian.
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Dark matter direct detection

I Strong tension between hints for a signal and exclusion limits:

LUX (90%)

SuperCDMS (90%)

CDMS-Si

(68% & 90%)

DAMA (90% & 3σ)
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I These kinds of plots assume the Standard Halo Model and a
specific DM-nucleus interaction.
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Our aim

I Identify Milky Way-like galaxies from simulated halos, by taking
into account observational constraints on the Milky Way (MW).

I Extract the local DM density and velocity distribution for the
selected MW analogues.

I Analyze the data from direct detection experiments, using the
predicted local DM distributions of the selected haloes.
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Identifying Milky Way analogues

I Usually a simulated halo is classified as MW-like if it satisfies the
MW mass constraint, which has a large uncertainty. We show
that the mass constraint is not enough to define a MW-like
galaxy.

I We consider simulated haloes with 5× 1011 < M200/M� < 1014,
and select the galaxies which most closely resemble the MW by
the following criteria:

I Rotation curve from simulation fits well the observed MW
kinematical data.

I The total stellar mass of the simulated galaxies is within the 3σ
observed MW range: 4.5× 1010 < M∗/M� < 8.3× 1010.
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Observations vs. simulations

I Numerical Simulations: The EAGLE hydrodynamic simulations
(DM + baryons) at two different resolutions.

Name L (Mpc) N mg (M�) mdm (M�)

EAGLE IR 100 6.8× 109 1.81× 106 9.70× 106

EAGLE HR 25 8.5× 108 2.26× 105 1.21× 106

APOSTLE IR – – 1.3× 105 5.9× 105

I Observational data: extensive compilation of MW rotation curve
measurements from: [Iocco, Pato, Bertone, 1502.03821].
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Observations vs. simulations

Initial sets of haloes:
EAGLE IR: 2411 | EAGLE HR: 61 |
APOSTLE IR: 24

Haloes which have correct total
stellar mass:
EAGLE IR: 335 | EAGLE HR: 12 |
APOSTLE IR: 2
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Observations vs. simulations

Goodness of fit to the observed data:
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N = 2687 is the total number of observational data points used.

I Minimum of the reduced χ2 occurs within the 3σ measured range
of the MW total stellar mass.⇒ haloes with correct MW stellar
mass have rotation curves which match well the observations.

I We focus only on the selected EAGLE HR and APOSTLE IR
haloes due to higher resolution.
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Dark matter density profiles

I Spherically averaged DM density profiles:
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I Need the DM density at the position of the Sun.

I Consider a torus aligned with the stellar disc with
7 kpc < R < 9 kpc, and −1 kpc < z < 1 kpc.

EAGLE HR: local ρDM = 0.42− 0.73 GeV cm−3.
APOSTLE IR: local ρDM = 0.41− 0.54 GeV cm−3.
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Local speed distributions
In the galactic rest frame:
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I Comparison to dark matter only (DMO) simulations:
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Local speed distributions
In the galactic rest frame:
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I Comparison to dark matter only (DMO) simulations:
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The differential event rate

I The differential event rate (event/keV/kg/day):

R(ER , t) =
ρχ

mχ

1
mA

∫
v>vm

d3v
dσA
dER

v fdet(v, t)

where vm =
√

mAER/(2µ2
χA) is the minimum WIMP speed required to produce a

recoil energy ER .

I For the standard spin-independent and spin-dependent
scattering:

R(ER , t) =
σ0 F 2(ER)

2mχµ
2
χA︸ ︷︷ ︸

particle physics

ρχ η(vm , t)︸ ︷︷ ︸
astrophysics

where

η(vm , t) ≡
∫

v>vm
d3v

fdet(v, t)
v

halo integral
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The halo integral
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Implications for direct detection
I Assuming the SHM:

LUX

SuperCDMS

CDMS-Si

DAMA
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Implications for direct detection
I Comparing with simulated MW-like haloes (smallest ρDM ):

LUX

SuperCDMS

CDMS-Si

DAMA
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Implications for direct detection
I Comparing with simulated MW-like haloes (largest ρDM ):

LUX

SuperCDMS

CDMS-Si

DAMA
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I Halo-to-halo uncertainty larger than the 1σ uncertainty from each halo.
I Overall difference with SHM mainly due to the different local DM density

of the simulated haloes.
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Effect of the velocity distribution

Fix local ρDM = 0.3 GeV cm−3

I Haloes with velocity distributions closest and farthest from SHM
Maxwellian:

LUX

SuperCDMS

CDMS-Si

DAMA
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I Shift in the low WIMP mass region persists, where experiments
probe the high velocity tail of the distribution.
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Summary

I We identified simulated haloes which satisfy observational
properties of the Milky Way, besides the uncertain mass
constraint. Haloes are MW-like if:

I good fit to observed MW rotation curve.
I stellar mass in the 3σ observed MW stellar mass range.

I The local velocity distribution of the selected haloes can deviate
substantially from the SHM Maxwellian with an excess at higher
speeds.⇒ shift of allowed regions and exclusion limits at low
WIMP masses.

I The local DM density: ρDM = 0.41− 0.73 GeV cm−3.⇒ overall
shift of the allowed regions and exclusion limits for all masses.
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Additional slides



Velocity distribution components

Distributions of radial, azimuthal, and vertical velocity components:
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