Implications of simulated MW-like haloes for DM direct detection

Nassim Bozorgnia

GRAPPA Institute University of Amsterdam

Based on work in progress with F. Calore, M. Lovell, G. Bertone, M. Schaller, and C. Frenk

Dark matter halo

► Very little is known about the details of the dark matter (DM) halo in the local neighborhood. ⇒ significant uncertainty when interpreting data from direct detection experiments.

Dark matter halo

- ► Very little is known about the details of the dark matter (DM) halo in the local neighborhood. ⇒ significant uncertainty when interpreting data from direct detection experiments.
- Usually the Standard Halo Model is assumed: isothermal sphere with an isotropic Maxwell-Boltzmann velocity distribution.
 - local DM density: $ho_{\chi} \sim 0.3 \ {
 m GeV} \ {
 m cm}^{-3}$
 - typical DM velocity: $\bar{v} \simeq$ 220 km/s

Dark matter halo

- ► Very little is known about the details of the dark matter (DM) halo in the local neighborhood. ⇒ significant uncertainty when interpreting data from direct detection experiments.
- Usually the Standard Halo Model is assumed: isothermal sphere with an isotropic Maxwell-Boltzmann velocity distribution.
 - local DM density: $ho_{\chi} \sim 0.3 \ {
 m GeV} \ {
 m cm}^{-3}$
 - typical DM velocity: $\bar{v} \simeq$ 220 km/s
- Numerical simulations of galaxy formation predict dark matter velocity distributions which can deviate from a Maxwellian.

Dark matter direct detection

Strong tension between hints for a signal and exclusion limits:

These kinds of plots assume the Standard Halo Model and a specific DM-nucleus interaction.

Our aim

- Identify Milky Way-like galaxies from simulated halos, by taking into account observational constraints on the Milky Way (MW).
- Extract the local DM density and velocity distribution for the selected MW analogues.
- Analyze the data from direct detection experiments, using the predicted local DM distributions of the selected haloes.

Identifying Milky Way analogues

Usually a simulated halo is classified as *MW-like* if it satisfies the MW mass constraint, which has a large uncertainty. We show that the mass constraint is not enough to define a MW-like galaxy.

Identifying Milky Way analogues

- Usually a simulated halo is classified as *MW-like* if it satisfies the MW mass constraint, which has a large uncertainty. We show that the mass constraint is not enough to define a MW-like galaxy.
- ► We consider simulated haloes with $5 \times 10^{11} < M_{200}/M_{\odot} < 10^{14}$, and select the galaxies which most closely resemble the MW by the following criteria:
 - Rotation curve from simulation fits well the observed MW kinematical data.
 - ► The total stellar mass of the simulated galaxies is within the 3σ observed MW range: $4.5 \times 10^{10} < M_*/M_{\odot} < 8.3 \times 10^{10}$.

 Numerical Simulations: The EAGLE hydrodynamic simulations (DM + baryons) at two different resolutions.

Name	L (Mpc)	N	$m_{ m g}~(M_{\odot})$	$m_{ m dm}$ (M_{\odot})
EAGLE IR	100	6.8 × 10 ⁹	1.81 × 10 ⁶	$9.70 imes 10^{6}$
EAGLE HR	25	$8.5 imes10^8$	$2.26 imes10^5$	$1.21 imes10^{6}$
APOSTLE IR	—	—	$1.3 imes10^5$	$5.9 imes10^5$

 Numerical Simulations: The EAGLE hydrodynamic simulations (DM + baryons) at two different resolutions.

Name	L (Mpc)	N	$m_{\rm g}~(M_{\odot})$	$m_{ m dm}$ (M_{\odot})
EAGLE IR	100	6.8 × 10 ⁹	1.81 × 10 ⁶	$9.70 imes 10^{6}$
EAGLE HR	25	$8.5 imes10^8$	$2.26 imes10^5$	$1.21 imes10^{6}$
APOSTLE IR	-	-	$1.3 imes10^5$	$5.9 imes10^5$

 Numerical Simulations: The EAGLE hydrodynamic simulations (DM + baryons) at two different resolutions.

Name	L (Mpc)	N	$m_{\rm g}~(M_{\odot})$	$m_{ m dm}$ (M_{\odot})
EAGLE IR	100	6.8 × 10 ⁹	1.81 × 10 ⁶	$9.70 imes 10^{6}$
EAGLE HR	25	$8.5 imes10^8$	$2.26 imes10^5$	$1.21 imes10^{6}$
APOSTLE IR	-	-	$1.3 imes10^5$	$5.9 imes10^5$

 Observational data: extensive compilation of MW rotation curve measurements from: [locco, Pato, Bertone, 1502.03821].

Goodness of fit to the observed data:

N = 2687 is the total number of observational data points used.

► Minimum of the reduced χ^2 occurs within the 3σ measured range of the MW total stellar mass. \Rightarrow haloes with correct MW stellar mass have rotation curves which match well the observations.

Goodness of fit to the observed data:

N = 2687 is the total number of observational data points used.

- ► Minimum of the reduced χ^2 occurs within the 3σ measured range of the MW total stellar mass. \Rightarrow haloes with correct MW stellar mass have rotation curves which match well the observations.
- We focus only on the selected EAGLE HR and APOSTLE IR haloes due to higher resolution.

Dark matter density profiles

Spherically averaged DM density profiles:

Dark matter density profiles

Spherically averaged DM density profiles:

- Need the DM density at the position of the Sun.
- Consider a torus aligned with the stellar disc with 7 kpc < R < 9 kpc, and -1 kpc < z < 1 kpc.

EAGLE HR: local $\rho_{DM} = 0.42 - 0.73$ GeV cm⁻³. **APOSTLE IR**: local $\rho_{DM} = 0.41 - 0.54$ GeV cm⁻³.

Local speed distributions

In the galactic rest frame:

Local speed distributions

In the galactic rest frame:

Comparison to dark matter only (DMO) simulations:

Nassim Bozorgnia TeVPA 2015, Kashiwa, 27 October 2015

The differential event rate

The differential event rate (event/keV/kg/day):

$$R(E_R, t) = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{m_A} \int_{v > v_m} d^3 v \frac{d\sigma_A}{dE_R} v f_{det}(\mathbf{v}, t)$$

where $v_m = \sqrt{m_A E_R / (2\mu_{\chi A}^2)}$ is the minimum WIMP speed required to produce a recoil energy E_R .

The differential event rate

The differential event rate (event/keV/kg/day):

$$R(E_R, t) = \frac{\rho_{\chi}}{m_{\chi}} \frac{1}{m_A} \int_{v > v_m} d^3 v \frac{d\sigma_A}{dE_R} v f_{det}(\mathbf{v}, t)$$

where $v_m = \sqrt{m_A E_R / (2\mu_{\chi A}^2)}$ is the minimum WIMP speed required to produce a recoil energy E_R .

For the standard spin-independent and spin-dependent scattering:

$$R(E_R, t) = \underbrace{\frac{\sigma_0 F^2(E_R)}{2m_\chi \mu_{\chi A}^2}}_{\text{particle physics}} \underbrace{\frac{\rho_\chi \eta(v_m, t)}{\text{astrophysics}}}_{\text{astrophysics}}$$

where

$$\eta(v_m,t) \equiv \int_{v > v_m} d^3 v \ \frac{f_{\rm det}(\mathbf{v},t)}{v}$$

halo integral

The halo integral

Nassim Bozorgnia TeVPA 2015, Kashiwa, 27 October 2015

Assuming the SHM:

• Comparing with simulated MW-like haloes (smallest ρ_{DM}):

• Comparing with simulated MW-like haloes (largest ρ_{DM}):

• Comparing with simulated MW-like haloes (largest ρ_{DM}):

• Halo-to-halo uncertainty larger than the 1σ uncertainty from each halo.

Comparing with simulated MW-like haloes (largest ρ_{DM}):

- Halo-to-halo uncertainty larger than the 1σ uncertainty from each halo.
- Overall difference with SHM mainly due to the different local DM density of the simulated haloes.

Effect of the velocity distribution

 Haloes with velocity distributions closest and farthest from SHM Maxwellian:

Effect of the velocity distribution

 Haloes with velocity distributions closest and farthest from SHM Maxwellian:

Shift in the low WIMP mass region persists, where experiments probe the high velocity tail of the distribution.

Summary

- We identified simulated haloes which satisfy observational properties of the Milky Way, besides the uncertain mass constraint. Haloes are MW-like if:
 - good fit to observed MW rotation curve.
 - stellar mass in the 3σ observed MW stellar mass range.

Summary

- We identified simulated haloes which satisfy observational properties of the Milky Way, besides the uncertain mass constraint. Haloes are MW-like if:
 - good fit to observed MW rotation curve.
 - stellar mass in the 3σ observed MW stellar mass range.
- ► The local velocity distribution of the selected haloes can deviate substantially from the SHM Maxwellian with an excess at higher speeds. ⇒ shift of allowed regions and exclusion limits at low WIMP masses.

Summary

- We identified simulated haloes which satisfy observational properties of the Milky Way, besides the uncertain mass constraint. Haloes are MW-like if:
 - good fit to observed MW rotation curve.
 - stellar mass in the 3σ observed MW stellar mass range.
- The local velocity distribution of the selected haloes can deviate substantially from the SHM Maxwellian with an excess at higher speeds. ⇒ shift of allowed regions and exclusion limits at low WIMP masses.
- ► The local DM density: $\rho_{DM} = 0.41 0.73 \text{ GeV cm}^{-3}$. \Rightarrow overall shift of the allowed regions and exclusion limits for all masses.

Additional slides

Velocity distribution components

Distributions of radial, azimuthal, and vertical velocity components:

