Neutrino Flavor Ratios Modified by Cosmic Ray Secondaryacceleration

ref.) NK & Ioka 2015, PRD accepted (arXiv:1504.03417)

<u>Norita Kawanaka</u> (Univ. of Tokyo) Kunihito Ioka (KEK/Sokendai)

TeV Particle Astrophysics @ Kashiwa-no-ha 26-30/10/2015

High Energy Neutrinos and Cosmic Rays

- IceCube: 54 events in 30 TeV 2 PeV
- TeV-PeV neutrinos = the probe of high energy CRs
- emitted via interactions between accelerated CR protons and (1) ambient matter or (2) photon field

1)
$$p + p \rightarrow \pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_\mu + \nu_e + \overline{\nu}_\mu$$

or $\pi^- \rightarrow \mu^- + \overline{\nu}_\mu \rightarrow e^- + \overline{\nu}_\mu + \nu_e + \nu_\mu$

(2)
$$p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_\mu + \nu_e + \overline{\nu}_\mu$$

- Cosmic ray accelerator = HE neutrino factory
- flavor ratio at a source... $v_e : v_\mu : v_\tau = 1 : 2 : 0$

Neutrino Flavor Ratio at the Earth

$$\Phi_{\nu_{\alpha}} = \sum_{\beta} P_{\alpha\beta} \Phi^{0}_{\nu_{\beta}} = \sum_{\beta} \sum_{i} |U_{\alpha i}|^{2} |U_{\beta i}|^{2} \Phi^{0}_{\nu_{\beta}}$$
 intrinsic
observed mixing matrix

→ For initial flux ratio $\Phi_{v_e}^0: \Phi_{v_\mu}^0: \Phi_{v_\tau}^0 = 1:2:0$, the observed ratio is expected to be $\Phi_{v_e}: \Phi_{v_\mu}: \Phi_{v_\tau} \approx 1:1:1$

Recent results of IceCube (35 TeV – 2 PeV) ... consistent with $\Phi_{v_e}: \Phi_{v_{\mu}}: \Phi_{v_{\tau}} \approx 1:1:1$

(The best fit value is 0: 0.2: 0.8)

Modification of Neutrino Flavor Ratio

1. Synchrotron/IC cooling of π/μ

 π/μ would lose their energy before they decay into v_i \rightarrow The neutrino spectra would be softened, and the flavor ratio is also affected (Kashti & Waxman 2005, etc.)

2. Re-acceleration of π/μ \leftarrow this talk

 π/μ would be accelerated by shocks and/or turbulence before they decay into v_i

→ <u>The neutrino spectra and flavor ratio would be</u> <u>modified!</u> (Winter et al. 2014, etc.)

The neutrino spectra and flavor ratio will tell us some important properties of CR accelerators (magnetic field, acceleration process, etc.) Re-acceleration of Secondary CRs (π/μ) shock acceleration of primary protons

 \rightarrow secondary π/μ production

- → π/μ are reaccelerated at the shock before their decay (τ_{π} =2.6x10⁻⁸ γ_{π} s, τ_{μ} =2.2x10⁻⁶ γ_{μ} s)
- The energy spectra of π/μ would be harder than those of their primary particles

Stochastic acceleration is also possible (Murase et al. 2012).

Re-acceleration of secondary π

Convection-Diffusion equation for the distribution function f_{π} (one-dimensional, stationary, neglecting synchrotron cooling)

$$u\frac{\partial f_{\pi}}{\partial x} = \frac{\partial}{\partial x} \left[D(p)\frac{\partial f_{\pi}}{\partial x} \right] + \frac{p}{3}\frac{du}{dx}\frac{\partial f_{\pi}}{\partial p} - \frac{f_{\pi}}{\tau_{\pi}} + Q_{\pi}(x,p),$$

we locity field:

$$u(x) = \begin{cases} u_1 & (x \le 0), \\ u_2 & (x > 0), \end{cases}$$
downstream upstream

$$\underbrace{\int_{x} \frac{du}{dx} \frac{\partial f_{\pi}}{\partial p}}_{x} - \frac{\int_{x} \frac{f_{\pi}}{\tau_{\pi}}}{\int_{x} \frac{f_{\pi}(x,p)}{f_0(p)e^{-x/d_1}}} \int_{x} \frac{f_{\pi}(x,p)}{\int_{x} \frac{f_{\pi}(x,p)}{f_0(p)e^{-x/d_1}}} \int_{x} \frac{f_{\pi}(x,p)}{\int_{x} \frac{f_{\pi}(x,p)}{f_0(p)e^{-x/d_1}}} \int_{x} \frac{f_{\pi}(x,p)}{\int_{x} \frac{f_{\pi}(x,p)}{f_0(p)e^{-x/d_1}}} \int_{x} \frac{f_{\pi}(x,p)}{f_0(p)e^{-x/d_1}} \int_{x} \frac{f_{\pi}(x,p)}{f_0(x,p)e^{-x/d_1}} \int_{x} \frac{f_{\pi}(x,p)}{f_0(p)e^{-x/d_1}} \int_{x} \frac{f_{\pi}(x,p)}{f_0(p)e^{-x/$$

 $D(p) \propto p$

$$p \approx \xi_{\pi} p_{\rm p} \ (\xi_{\pi} \approx 0.2)$$

Solve the Transport Equation of π

upstream

$$f_{\pi,-} = \left[f_{\pi,0} - \frac{DQ_{\pi,0}}{D/\tau_{\pi} + (\xi_{\pi} - \xi_{\pi}^2)u_1^2} \right] \exp\left(\frac{\sqrt{u_1^2 + 4D/\tau_{\pi}} + u_1}{2D}x\right) \\ + \frac{DQ_{\pi,0}}{D/\tau_{\pi} + (\xi_{\pi} - \xi_{\pi}^2)u_1^2} \exp\left(\frac{\xi_{\pi}u_1}{D}x\right),$$

downstream

$$f_{\pi,+} = (f_{\pi,0} - Q_{\pi,0}\tau_{\pi}) \exp\left(-\frac{\sqrt{u_2^2 + 4D/\tau_{\pi}} - u_2}{2D}x\right) + Q_{\pi,0}\tau_{\pi}.$$

 $-Q_{\pi,0}(p)$

 $= t_{\rm acc}$

at the shock front:

$$f_{\pi,0}(p) = \gamma B_{\pi} \int_0^p \frac{dp'}{p'} \left(\frac{p'}{p}\right)^{\gamma A_{\pi}} \frac{D(p')Q_{\pi,0}(p')}{u_1^2}.$$

 A_{π}, B_{π} : *p*-independent factors

Re-acceleration of secondary µ

Convection-Diffusion equation for the distribution function f_{μ}

$$u\frac{\partial f_{\mu}}{\partial x} = \frac{\partial}{\partial x} \left[D(p)\frac{\partial f_{\mu}}{\partial x} \right] + \frac{p}{3}\frac{du}{dx}\frac{\partial f_{\mu}}{\partial p} - \frac{f_{\mu}}{\tau_{\mu}} + Q_{\mu}(x,p),$$

diffusion decay source term

source term : proportional to the distribution of primary particles, f_{π} (shown in the last slide):

$$Q_{\mu} = \frac{1}{\xi_{\mu}} \cdot \frac{f_{\pi}(x, p/\xi_{\mu})}{\tau_{\pi}(p/\xi_{\mu})}, \quad \xi_{\mu} \approx 0.75$$

Solve the Transport Equation of μ

upstream & downstream

$$\begin{aligned} f_{\mu,-} &= \left(f_{\mu,0} - \frac{4Dq_{\mu,a}^{-}}{(u_{1}^{2} + 4D/\tau_{\mu}) - (\xi_{\mu}\sqrt{u_{1}^{2} + 4D/\tau_{\pi}} - (1 - \xi_{\mu})u_{1})^{2}} - \frac{Dq_{\mu,b}^{-}}{D/\tau_{\pi} + (\xi_{\mu}\xi_{\pi} - \xi_{\mu}^{2}\xi_{\pi}^{2})u_{1}^{2}} \right) \exp\left(\frac{\sqrt{u_{1}^{2} + 4D/\tau_{\mu}} + u_{1}}{2D}x\right) \\ &+ \frac{4Dq_{\mu,a}^{-}}{(u_{1}^{2} + 4D/\tau_{\mu}) - (\xi_{\mu}\sqrt{u_{1}^{2} + 4D/\tau_{\pi}} - (1 - \xi_{\mu})u_{1})^{2}} \exp\left(\frac{\xi_{\mu}(\sqrt{u_{1}^{2} + 4D/\tau_{\pi}} + u_{1})}{2D}x\right) \\ &+ \frac{Dq_{\mu,b}^{-}}{D/\tau_{\pi} + (\xi_{\mu}\xi_{\pi} - \xi_{\mu}^{2}\xi_{\pi}^{2})u_{1}^{2}} \exp\left(\frac{\xi_{\mu}\xi_{\pi}u_{1}}{D}x\right), \end{aligned}$$
(A5)
$$f_{\mu,+} &= \left(f_{\mu,0} - \frac{4Dq_{\mu,a}^{+}}{(u_{2}^{2} + 4D/\tau_{\mu}) - (\xi_{\mu}\sqrt{u_{2}^{2} + 4D/\tau_{\pi}} + (1 - \xi_{\mu})u_{2})^{2}} - q_{\mu,b}^{+}\tau_{\mu}\right) \exp\left(-\frac{\sqrt{u_{2}^{2} + 4D/\tau_{\mu}} - u_{2}}{2D}x\right) \\ &+ \frac{4Dq_{\mu,a}^{+}}{(u_{2}^{2} + 4D/\tau_{\mu}) - (\xi_{\mu}\sqrt{u_{2}^{2} + 4D/\tau_{\pi}} + (1 - \xi_{\mu})u_{2})^{2}} \exp\left(-\frac{\xi_{\mu}(\sqrt{u_{2}^{2} + 4D/\tau_{\pi}} - u_{2})}{2D}x\right) + q_{\mu,b}^{+}\tau_{\mu}. \end{aligned}$$
(A6)

at the shock front:

Neutrino spectra

$$\begin{split} \Phi^{0}_{\nu_{\mu}}(p) &= \int dx^{3} \frac{4\pi p^{2}}{\xi_{\nu_{\mu}}} \frac{f_{\pi}(x, p/\xi_{\nu_{\mu}})}{\tau_{\pi}(p/\xi_{\nu_{\mu}})}, \\ \Phi^{0}_{\bar{\nu}_{\mu}}(p) &= \int dx^{3} \frac{4\pi p^{2}}{\xi_{\bar{\nu}_{\mu}}} \frac{f_{\mu}(x, p/\xi_{\bar{\nu}_{\mu}})}{\tau_{\mu}(p/\xi_{\bar{\nu}_{\mu}})}, \\ \Phi^{0}_{\nu_{e}}(p) &= \int dx^{3} \frac{4\pi p^{2}}{\xi_{\nu_{e}}} \frac{f_{\mu}(x, p/\xi_{\nu_{e}})}{\tau_{\mu}(p/\xi_{\nu_{e}})}, \end{split}$$

where
$$\xi_{\nu_{\mu}} \approx 0.25, \ \xi_{\overline{\nu}_{\mu}} \approx 0.33, \ \xi_{\nu_{e}} \approx 0.33$$

Application: low-power GRBs

from Murase & Ioka (2013)

- IceCube observations have ruled out typical long GRBs as the main source of HE neutrinos (Abbasi+12; He+ 2012)
- Low-power GRBs (ultra-long GRBs, LLGRBs) are still not strongly constrained.

Results: neutrino spectra

Summary (for the detail, see arXiv:1504.03417)

- The spectra and flavor ratio of high energy neutrinos would be modified by the shock reacceleration of secondary π/μ.
- The asymptotic value of the flavor ratio in the high-energy range is determined from the ratio of the acceleration timescale (t_{acc}) to the decay timescale of μ (τ_{μ}).
- The combination of the neutrino spectra and flavor ratio may tell us some properties of CR accelerators (especially the acceleration timescale).

various timescales

parameters: $L_{\rm B}$ = 10⁴⁷ erg/s, Γ =80, Δt =1 msec, $\beta_{\rm rel}$ =0.5 (rel. velocity of colliding shells)

 t_{acc} : acceleration timescale $t_{i,syn}$: sync. cooling timescale $t_{i,IC}$: IC cooling timescale $t_{i,dec}$: lifetime of a particle *i* $t_{p\gamma}$: *p* γ interaction timescale t_{dyn} : dynamical timescale

 $t_{acc} >> t_{i,syn}$ when $\varepsilon_i >\sim 10^{16} \text{ eV}$ \rightarrow cooling of π/μ should be taken into account

