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High Energy Neutrinos and Cosmic Rays

» |ceCube: 54 events in 30 TeV — 2 PeV

« TeV-PeV neutrinos = the probe of high energy CRs

» emitted via interactions between accelerated CR protons
and (1) ambient matter or (2) photon field
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roughly speaking ‘

* Cosmic ray accelerator = HE neutrino factory
* flavor ratio at a source... v :v, v, =1:2:0




Neutrino Flavor Ratio at the Earth
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Modification of Neutrino Flavor Ratio

1. Synchrotron/IC cooling of it/

nt/u would lose their energy before they decay into v,
—> The neutrino spectra would be softened, and the
flavor ratio is also affected (Kashti & Waxman 2005, etc.)

2. Re-acceleration of m/u € this talk

n/u would be accelerated by shocks and/or
turbulence before they decay into v,

= The neutrino spectra and flavor ratio would be
modified! (Winter et al. 2014, etc.)

The neutrino spectra and flavor ratio will tell us
some important properties of CR accelerators
(magnetic field, acceleration process, etc.)




Re-acceleration of Secondary CRs (7t/w)

shock acceleration of primary

protons

- secondary mt/u production SHOCK oL
m/u

- m/u are reaccelerated at the 0/7.\>/\/\/\/‘

shock before their decay proton [
(t,=2.6x10°y, s, 1,=2.2x10°y, s) °
G ‘ CE—
<

- The energy spectra of w/u T upstream
would be harder than those

of their primary particles

# Stochastic acceleration is also
possible (Murase et al. 2012).



Re-acceleration of secondary n

Convection-Diffusion equation for the distribution function f,
(one-dimensional, stationary, neglecting synchrotron cooling)
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source term: proportional to the distribution of primary protons
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Solve the Transport Equation of n

upstream
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Re-acceleration of secondary u
Convection-Diffusion equation for the distribution function f,

of, 0

of pdudf, f
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diffusion decay source term

source term : proportional to the distribution of primary
particles, f.(shown in the last slide):
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Solve the Transport Equation of

upstream & downstream
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Neutrino spectra
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Apphcatlon low-power GRBs

o JceCube observations have ruled
out typical long GRBs as the

S(ellar envelope

: Colllmated jet . .
\ main source of HE neutrinos
Collimation .
Radiation shock’, (Abbasi+12; He+ 2012)
=%/ Internal shocks * Low-power GRBs (ultra-long
Cocton Pre-cpllimated jet GRBs, LLGRBs) are still not
' N ‘ strongly constrained.

from Murase & Ioka (2013)

Consider the internal shocks occurring inside a star
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.". t/u can be re-accelerated before their decaL|




Results: neutrino spectra

(spectra at the source) Ly=10%" erg/s, T =80,
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Results : ﬂavor ratio (v,:v,)
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Summary (for the detail, see arXiv:1504.03417)

* The spectra and flavor ratio of high energy
neutrinos would be modified by the shock re-
acceleration of secondary mt/u.

* The asymptotic value of the flavor ratio in the
high-energy range is determined from the ratio
of the acceleration timescale (¢,..) to the decay
timescale of u (t,).

* The combination of the neutrino spectra and
flavor ratio may tell us some properties of CR
accelerators (especially the acceleration
timescale).
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various timescales

parameters: L, = 104 erg/s,
I' =80, Ar=1 msec,

B, =0.5 (rel. velocity of
colliding shells)

t,.. - acceleration timescale
tl.’syn : sync. cooling timescale
t;1c - 1C cooling timescale
ldec : lifetime of a particle i
t,,: py interaction timescale

t4yn - dynamical timescale

t. >> when g >~ 101 eV

acc z ,Syn

- cooling of wr/u should be
taken into account
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