The electron plus positron spectrum from annihilation of Kaluza-Klein dark matter and comparison with recent measurements

> Dept. Physical Sciences, Ritsumeikan Univ Satoshi Tsuchida, Masaki Mori

### Contents

- Kaluza-Klein Dark Matter
- LKP annihilation modes
- The effects of propagation
- Total positron fraction
- Comparison with recent measurements
- Summary

## Kaluza-Klein Dark Matter

• UED (Universal Extra Dimensions)

Only 1 extra dimension

• Kaluza-Klein dark matter mass

$$m^{(n)} = \sqrt{\left(\frac{n}{R}\right)^2 + m_{\rm EW}^2}$$

We assume the first excited state (LKP) : n = 1

Mass range  $m_B = 300 \text{GeV} - 1000 \text{GeV}$ 

L. Bergstrom et al, Phys. Rev. Lett 94(2005) 131301



Cheng et al., Phys. Rev. Lett. 89 (2002) 211301



- Golden 1994
- Golden 1984
- Tang 1984
- Boezio 2000
- △ DuVernois 2001
- ▲ Torii 2001
- ∇ Aguilar 2002
- Chang 2008
- Torii 2008
- Kobayashi 2012
- Ackermann 2010
- Aharonian 2009
- Aharonian 2009
- Adriani 2011
- Ting 2013

## Positron fraction

#### By AMS-02 observation...

The positron excess above 10 GeV is reported



# Annihilation modes

• Kaluza-Klein dark matter

There are many modes containing the electron as the final products

Line

Electron – Positron Pair  $(e^+e^-)$ 

Continuum

ComponentsBranching RatioMuon Pair  $(\mu^+\mu^-)$ 20 %Tauon Pair  $(\tau^+\tau^-)$ 20 %Quark Pairs12 %Gauge Bosons1.5 %

L. Bergstrom, Phys. Rev. Lett. 131301 (2005)

# Creation

The energy distribution for Line and Continuum components when LKP annihilates in the Galactic halo



#### Flux

• The Electron-Positron Flux  

$$\frac{d\Phi_{e^+}}{d\Omega dE} = 2.7 \times 10^{-4} B_f \times B \frac{\langle \sigma v \rangle_{\rm LKP}}{\rm pb} \left(\frac{\rho_0}{0.3 \text{ GeV/cm}^3}\right)^2 \\ \times \left(\frac{1000 \text{ GeV}}{m_{B^{(1)}}}\right)^2 g\left(1, \frac{E}{m_{B^{(1)}}}\right) \text{ cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{GeV}^{-1}$$

• The Green function for Propagation

$$g\left(1, \frac{E}{m_{B^{(1)}}}\right) \propto \frac{10^{a(\log_{10} E)^2 + b(\log_{10} E) + c}}{E^2} \theta(m_{B^{(1)}} - E)$$

By determining the parameters a, b, and c, the form of propagation is determined

I. V. Moskalenko & A. W. Strong, PRD 60 (1999) 063003



## Boost factor

• Boost factor

The factor which may enhance the signal from LKP

annihilation in the Galactic halo

$$B_{f} = B_{\rho} \times B_{\sigma v}$$
$$= \left(\frac{\langle \rho^{2}(l) \rangle_{\Delta V}}{\langle \rho_{0}^{2}(l) \rangle_{\Delta V}}\right) \left(\frac{\langle \sigma v \rangle}{3 \times 10^{-26} \text{ cm}^{3} \text{s}^{-1}}\right)_{\Delta V}$$

• Cross Section

The value of boost factor is determined based on this cross section

## Line and Continuum Flux



## **Positron Fraction**

#### **Total positron fraction**

$$\frac{F_{\rm LKP} \times B_f \times f_{\rm LKP} + F_{\rm Conv} \times f_{\rm Conv}}{F_{\rm LKP} \times B_f + F_{\rm Conv}}$$

 $F_{LKP}$ : Flux from LKP annihilation  $F_{Conv}$ : The "Conventional" Flux  $f_{LKP}$ : Positron fraction for the LKP (=0.5)  $f_{Conv}$ : Positron fraction for  $F_{conv}$  $B_f$ : The Boost Factor

Q. Yuan and X. J. Bi, Phys. Lett. B727, 1 (2013)

I. V. Moskalenko and A. W. Strong, Astrophys. J 493, 694 (1998).

#### Comparison with recent measurements



### Boost factor



LKP mass [GeV]





- The flux from LKP can fit to AMS-02 data for positron excess
- The value of boost factor depends on LKP mass, and it is larger for heavier LKP mass than for lighter
- Light LKP mass, such as 300 GeV, may be excluded, because the edge structure has not been observed by some experimental data

# Thank you for listening

# Electron plus positron spectrum



#### **Positron Fraction**

e<sup>+</sup>/(e<sup>+</sup>+e<sup>-</sup>)



M. Di Mauro et al., JCAP 04 (2014) 006