High-energy Particle Emission and Cumulative Background from Low-Luminosity AGN

SSK, Murase, & Toma, 2015, ApJ, 806,159
Fujita, SSK, Murase 2015, PRD, 92, 023001

Shigeo S. KIMURA (Tohoku Univ.)

Collaborator: Kenji TOMA (Tohoku Univ.) Kohta MURASE (Penn. Stat. Univ.) Yutaka FUJITA(Osaka Univ.)

TABLE OF CONTENTS

- Introduction
- Neutrino emission from LLAGNs
- Gamma-rays from LLAGNs
- Summary

INTRODUCTION

(Mahadevan & Quataert 97)

Emission from Hot Accretion Flow e.g.) Narayan & Yi 94; Narayan, Sadowski + 12

Emission from Hot Accretion Flow

e.g.) Narayan & Yi 94; Narayan, Sadowski + 12

cf.) Begelman+90; Niedzwiecki+13

Observation of Astro-Neutrinos

IceCube detected the diffuse neutrinos

Observation of Astro-Neutrinos candidates '13,15

- Ice(Starburst Galaxies (Tambbora+14; Senno+15;)
 - ¹⁽GRB, LLGRB (Murase&loka13; Bustamante+15; Kawanaka+15)
 - AGN jets (Dermer+14; Murase+14; Tavecchio+14;)
 - cm^{-2} AGN CORES (Stecker13;Kalashev+15;khiali+15) Sr^{-1}
 - Galactic (Ahlers&Murase14;Bai+14;Neronov&Semikoz15)

The origin is still under debated

Observation of Astro-Neutrinos candidates '13,15

- Ice(Starburst Galaxies (Tambbora+14; Senno+15;)
 - 1(GRB, LLGRB (Murase&loka13; Bustamante+15; Kawanaka+15)
 - AGN jets (Dermer+14; Murase+14; Tavecchio+14;)
 - cm^{-2}] AGN cores (Stecker13;Kalashev+15;khiali+15)

10⁵

Gel

 10^{4}

Galactic (Ahlers&Murase14;Bai+14;Neronov&Semikoz15)

The origin is still under debated

We propose RIAFs in LLAGN

E. [GeV]

 10^{6}

107

NEUTRINO EMISSION FROM LLAGNs

LLAGN Model

SSK, Murase, & Toma, 2015, ApJ, 806,159

Stochastic Acceleration inside One-Zone RIAF

Target Photons of py

Photon fields inside RIAF:

Synchrotron & SSC from thermal electrons

- Thermal balance
- $\delta_{\rm e}\dot{\rm M}{\rm c}^2 = {\rm L}_{\rm rad}({\rm T}_{\rm rad})$

BH

• Virialization $kT_{e,vir} = GM_{BH}m_p/(9R)$ $T_e = min(T_{rad}, T_{vir})$

 $\delta_e \dot{M} c^2$

M

LLAGN Model SSK, Murase, & Toma, 2015, ApJ, 806,159

Stochastic Acceleration inside One-Zone RIAF

Comparison of Timescales SK, Murase, & Toma, 2015, ApJ, 806,159

Neutrino Spectrum from a LLAGN

Turbulent strength ζ

Kolmogorov: $P(k) \propto k^{-5/3}$ $\zeta = 8\pi \int P(k) dk / B_0^2$

- •high $\zeta \rightarrow$ high E_{peak}
- ·low $\eta_{\rm cr} \rightarrow {\rm low } L_{\rm E}$
- $\cdot E\nu > 10^6 \text{ eV} \rightarrow p\gamma \text{ dominant}$

* 7 8 * 7 5

ν flux from all the sources

జి. జె. జి. జి. జె. జి. జె. జి.

$$\Phi_{\nu} = \frac{c}{4\pi H_0} \int_0^{z_{\text{max}}} \frac{dz}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}} \int_{L_{\text{min}}}^{L_{\text{max}}} dL_{\text{bol}} \phi(L_{\text{bol}}, z) \frac{L_{E_{\nu}'}(L_{\text{bol}})}{E_{\nu}'}$$

SSK, Murase, & Toma, 2015, ApJ, 806,159

LLAGN model can explain half part of IceCube events

•Injection efficiency: $\eta_{cr} \sim 10^{-3} - 10^{-2}$

Other sources may explain the other part.

(e.g., Starburst Galaxies, Low Luminosity GRBs)

GAMMA RAYS FROM LLAGN

Fujita, SSK, Murase 15, PRD, 92, 023001

γ-rays by Escaping Protons Fujita, SSK, Murase 15, PRD, 92, 023001

Some LLAGNs are surrounded by the Giant Molecular Clouds (GMC)

 Escaping protons emit gamma-rays through interaction with GMC

γ-rays by Escaping Protons

Fujita, SSK, Murase 15, PRD, 92, 023001

$$\frac{\partial f}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \kappa \frac{\partial f}{\partial r} \right) + Q$$

 This model is consistent with observed TeV flux from the Galactic Center & Centaurus A

SUMMARY

SUMMARY

SSK, Murase, & Toma'15

- We propose LLAGN model as a source of IceCube events
- Calculating the proton spectra inside RIAFs, we find that
 - 1. Acceleration is limited by escape rather than cooling
 - 2. LLAGN can explain the IceCube neutrinos for either low energy or high energy data with reasonable parameter sets
 - 3. The escape p can emit γ by interaction with circum-nuclear matter

THANK YOU FOR YOUR ATTENTION

Gamma-rays from LLAGNS SK, Murase, & Toma, 2015, ApJ, 806,159

• pp & p
$$\gamma \rightarrow \pi^{\pm} + \pi^{0} \rightarrow \nu + \gamma$$

Gamma-rays are inevitably generated with neutrinos

ExtraGalactic Background (EGB) constrains some models

Murase+13; Murase+15

Cosmic-ray Flux from LLAGNs

Suppose CRs travel IGM straightly with speed of light, which gives Maximum CR flux from LLAGN. This Maximum CR flux is lower than observation

