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What are we trying to do?

1. Create one of the most
radiation-free locations in the
world

2. See if we measure anything
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3. If so, check if it is compatible
with a dark matter signal

3

3 3

Where are we now?
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- Lots of sensitive experiments ) . L] s g ¢ wony e
. 8 7830 20 30 40 50 100 200 300 1000
have seen nothing WIMP mass [GeV/c?]
- Lots of parameter space is still
open



Beauty in simplicity: detection principle
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For one reaction we measure
- Scintillation signals (S1)
- lonization signals (S2)
- The time between them

We perform a straightforward analysis

- Demand quality conditions on
S1/S2 signals and background
conditions

- Demand event location within
fiducial volume (position from
drift time and S2)

- Get rid of anything that scatters
twice

We then observe what is left
- Ratio of S2/S1
- WIMP should be a nuclear
recoil
- ER/NR separation 99.75% at
40% NR acceptance (for
XENON100)

n.b.! Understanding expected
background important!




XENON, step by step

XENON10 XENON100 XENONA1T XENONNT DARWIN

Time: Until 2007 Time: Since 2008 Time: From 2015 Time: From 2018 Time: 2020s
Total: 25 kg Total: 162 kg Total: 3.5 ton Total: 7.5 ton Total: 50 ton
Target:14 kg Target: 62 kg Target: 2 ton Target: 6 ton Target: 42 ton
Fiducial: 5.4 kg Fiducial: 48 kg Fiducial: 1 ton Fiducial: 4.5ton  Fiducial: 30 ton
Limit: ~10% Limit: ~10%° Limit: ~104’ Limit: ~104°

Limit: ~10®

XENONA1T located in
Hall B at LNGS, Gran
Sasso, Italy




How do you improve sensitivity?

1. Build a bigger, better experiment (target mass, detector design)

e Technically challenging (but we did it)
o  Cryogenics: liquify about 3.5 tons of xenon and maintain it stably
o Homogeneous E field over 1m drift distance
o High light yield: only PMTs and high-reflectivity PTFE visible from inside
o Calibration non-trivial (self-shielding = prefer internal calibrations)

2. Reduce backgrounds

e Every piece of the detector is radioactive!
o  Minimize material budget
o Screen everything, choose cleanest materials
e Muons can create neutron background
o  Put everything under a mountain (LNGS: 3500 m.w.e.) ~10° reduction in muons
o Active cherenkov muon veto [JINST 9, P11006 (2014)]
e xenon is not pure enough off-the-shelf
o 8Kr source of background — distilled out
o Electronegative impurities reduce signal — continuous purification



Step 1: The Bigger Detector

PMT top array

Anode
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High reflectivity
teflon

96 cm
Copper field-shaping
rings
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PMT bottom array

—— 96 cm




Electronic Recoil Background Xe

XENON
Matter Project
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Direct Material Background
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e Cleanest materials chosen, material budget m;_ = 1107 3,
minimized = 3 5
o  60% from cryostat arxiv:1503.07698 5 0 A 04 =
o  25% from PMTs/bases A00F- 2
o 15% from TPC stainless steel 200F 105 &
o 1% from Cu and PTFE 300
-400% 10°®
Impurities in xenon )20 40 60 80 100 126'1'10' '?léﬁ‘ozou 220 0
R? [mm?]
Source Count [ty "] Fraction [%)]
o 222Rp
o Minimize leakage into cryo system (i.e., hermetically | Materials 273 17.8
sealed pumps)
222
o Low radon emanation components Rn 56 £ 11 36.8
o Dedicated radon emanation measurements 85K 28 + 6 18.4
Solar neutrinos | 32+ 1 21.1
o BKr
o  Kr exists in high-purity commercial LXe at ppb level | *®Xe 9+5 5.9
o 8Kr/Kr about 1%
o Dedicated distillation system — "3Kr to ppq level! Total 152£15 100

(2-12 keV search window, 1t FV, single scatters, before ER/NR discrimination) 7

See: S. Lindemann, H. Simgen, Eur.Phys.J.C 74, 2746 (2014)


http://arxiv.org/abs/1503.07698
http://arxiv.org/abs/1503.07698
http://arxiv.org/abs/1503.07698

Nuclear Recoil Background

Radiogenic neutrons

e (a, n) reactions from U- and Th- chains and
spontaneous fission

e Mimic WIMP signal (many are single scatter,
many penetrate into fiducial volume)

e Reduction via careful material selection and
minimization of material budget

Muon-induced neutrons

e Produced by muon interactions with rock and
detector materials
e Active muon veto blocks neutrons and tags
muons and muon showers [JINST 9, P11006 (2014)]
o >99.5% efficiency for muons crossing the
water tank
o >70% efficiency for muon showers for
muons not crossing the water tank

Coherent neutrino scattering

e Irreducible background
e Larger at very low energies (1keV)
e Nearly no contribution above threshold of 5 keV
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e Irreducible background
e Larger at very low energies (1keV)
e Nearly no contribution above threshold of 5 keV



Exposure time
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XENON100 - 2012 (in ~2 days)

LUX ='20613 (in ~5 days)

XENON1T Nominal Exposure (2 years)

10 10°
Livetime, in 1 ton FV [days]

XENONA1T will be
exploring new ground
very quickly after
coming online

After two years
exposure we will have
reached our design
sensitivity
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Things are coming together! Xe

XENON

Matter Project




Readout of 300MB/s

(1kHz) for strong calibration

sources

Veto high-energy events in
hardware before readout
Parallelize readout (networked
readout PCs)

Sort pre-triggered data using fast
software (MongoDB)

Low energy threshold for
improved low-mass
sensitivity

Custom digitizer firmware
Readout of individual channels
Y5 p.e. threshold/channel
No loss of sensitivity in trigger

Robust Design for long-term
use

Off-the-shelf electronics (same as
in XENON100)

Open-source, industry-standard
software

Software trigger shares XENON1T
data processor codebase
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How it looks in schematic

3 Machines, memory-resident DB

—P and

: Storage

Processing

Fast (real-time) pre-
trigger selection using
database

Trigger selection
algorithms built into
data processor —
flexible!

i .mongo .mongo
Readout i Raw Software Event
PCs _> Buffer > Trigger Buffer
CAEN V1724 Digitizers MongoDB
- 100 MHz, 8 channels - Fast, noSQL
- Synchronized readout database
through several - Very popular in
readout PCs industry and data
science
Custom firmware:
e Channels trigger We use it to:
independently e Buffer the data
e On-board delay for e Sort the data
high-energy veto e Retrieve the data
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How it looks in real life... Xe

XENON

Matter Project

Frontend on the web — ‘
- Access control, logging -
- Start, stop, configure system
- Monitor data online, in real =i

DAQ Logbook

13:30 13:35 13:40 1345 13:50 1355

48 hours | 24 hours | & hours | 1 hour || 10min | 2min | 30 sec |

Easy to build because of integration — et Ll — e RIS
with pro-grade databases in the system - sapi T 2 : D [
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Conclusions Xe

XENON

Matter Project

XENON1T has almost finished installation
- TPC construction finished within
days
- Installation in cryostat in a couple
weeks
- Several subsystems already
commissioned

XENONA1T will be the most sensitive WIMP
search ever performed
- Largest target mass ever realized in
a DM direct detection experiment
- Very low backgrounds through strict
material selection and designs

XENONNT will follow soon
- Upgrade design built-in from the
ground up
- Re-use of most existing systems but
one order of magnitude better limit
- Another order of magnitude
sensitivity!



