XENON1T Pushing the limits of WIMP detection

D. Coderre for the XENON1T Collaboration AEC University of Bern TeVPA-2015 Tokyo

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

What are we trying to do?

- Create one of the most radiation-free locations in the world
- 2. See if we measure anything that can't be explained by current physics
- 3. If so, check if it is compatible with a **dark matter** signal

Where are we now?

- Lots of sensitive experiments have seen nothing
- Lots of parameter space is still open

Beauty in simplicity: detection principle

XENON, step by step

XENON10 Time: Until 2007 Total: 25 kg Target:14 kg Fiducial: 5.4 kg Limit: ~10⁻⁴³

XENON100 Time: Since 2008 Total: 162 kg Target: 62 kg Fiducial: 48 kg Limit: ~10⁻⁴⁵

XENON1T Time: From 2015 Total: 3.5 ton Target: 2 ton Fiducial: 1 ton Limit: ~10⁻⁴⁷

XENONnT Time: From 2018 Total: 7.5 ton Target: 6 ton Fiducial: 4.5 ton Limit: ~10⁻⁴⁸

DARWIN Time: 2020s Total: 50 ton Target: 42 ton Fiducial: 30 ton Limit: ~10⁻⁴⁹

XENON1T located in Hall B at LNGS, Gran Sasso, Italy

1. Build a bigger, better experiment (target mass, detector design)

- Technically challenging (but we did it)
 - Cryogenics: liquify about 3.5 tons of xenon and maintain it stably
 - Homogeneous E field over 1m drift distance
 - High light yield: only PMTs and high-reflectivity PTFE visible from inside
 - Calibration non-trivial (self-shielding = prefer internal calibrations)

2. Reduce backgrounds

- Every piece of the detector is radioactive!
 - Minimize material budget
 - Screen everything, choose cleanest materials
- Muons can create neutron background
 - Put everything under a mountain (LNGS: 3500 m.w.e.) $\sim 10^6$ reduction in muons
 - Active cherenkov muon veto [JINST 9, P11006 (2014)]
- xenon is not pure enough off-the-shelf
 - \circ ⁸⁵Kr source of background \rightarrow distilled out
 - \circ Electronegative impurities reduce signal \rightarrow continuous purification

Step 1: The Bigger Detector

Electronic Recoil Background

Direct Material Background

- Cleanest materials chosen, material budget minimized
 - 60% from cryostat arXiv:1503.07698
 - 25% from PMTs/bases
 - 15% from TPC stainless steel
 - 1% from Cu and PTFE

Impurities in xenon

• ²²²Rn

- Minimize leakage into cryo system (i.e., hermetically sealed pumps)
- Low radon emanation components
- Dedicated radon emanation measurements

• ⁸⁵Kr

- Kr exists in high-purity commercial LXe at ppb level
- ⁸⁵Kr/^{nat}Kr about 1%
- Dedicated distillation system \rightarrow ^{nat}Kr to ppq level!

Source	Count [t ⁻¹ y ⁻¹]	Fraction [%]
Materials	27 ± 3	17.8
²²² Rn	56 ± 11	36.8
⁸⁵ Kr	28 ± 6	18.4
Solar neutrinos	32 ± 1	21.1
¹³⁶ Xe	9 ± 5	5.9
Total	152 ± 15	100

(2-12 keV search window, 1t FV, single scatters, before ER/NR discrimination) -

Nuclear Recoil Background

Radiogenic neutrons

- (α, n) reactions from U- and Th- chains and spontaneous fission
- Mimic WIMP signal (many are single scatter, many penetrate into fiducial volume)
- Reduction via careful material selection and minimization of material budget

Muon-induced neutrons

- Produced by muon interactions with rock and detector materials
- Active muon veto blocks neutrons and tags muons and muon showers [JINST 9, P11006 (2014)]
 - >99.5% efficiency for muons crossing the water tank
 - >70% efficiency for muon showers for muons not crossing the water tank

Coherent neutrino scattering

- Irreducible background
- Larger at very low energies (1keV)
- Nearly no contribution above threshold of 5 keV

Source	Count [t ⁻¹ y ⁻¹]
Radiogenic	0.5 ± 0.1
Muon	<0.01
Neutrino	(1.1 ± 0.2) x 10 ⁻²
Total	<1

(5-50 keV search window, 1t FV, before ER/NR discrimination)

- Irreducible background
- Larger at very low energies (1keV)
- Nearly no contribution above threshold of 5 keV

(5-50 keV search window, 1t FV, before ER/NR discrimination)

Exposure time

- XENON1T will be exploring new ground very quickly after coming online
- After two years exposure we will have reached our design sensitivity

Things are coming together!

Subsystem spotlight: data acquisition

Readout of 300MB/s (1kHz) for strong calibration sources

- Veto high-energy events in hardware before readout
- Parallelize readout (networked readout PCs)
- Sort pre-triggered data using fast software (MongoDB)

Low energy threshold for improved low-mass sensitivity

- Custom digitizer firmware
- Readout of individual channels
- ¹/₃ p.e. threshold/channel
- No loss of sensitivity in trigger

Robust Design for long-term use

- Off-the-shelf electronics (same as in XENON100)
- Open-source, industry-standard software
- Software trigger shares XENON1T data processor codebase

How it looks in schematic

CAEN V1724 Digitizers

- 100 MHz, 8 channels
- Synchronized readout through several readout PCs

Custom firmware:

- Channels trigger independently
- On-board delay for high-energy veto

MongoDB

- Fast, noSQL database
- Very popular in industry and data science

We use it to:

- Buffer the data
- Sort the data
- Retrieve the data

Online Trigger

- Fast (real-time) pretrigger selection using database
- Trigger selection algorithms built into data processor → flexible!

How it looks in real life...

How it looks to an operator

Frontend on the web

- Access control, logging
- Start, stop, configure system
- Monitor data online, in real time

Easy to build because of integration with pro-grade databases in the system

Conclusions

-

XENON1T has almost finished installation

- TPC construction finished within days
- Installation in cryostat in a couple weeks
- Several subsystems already commissioned

XENON1T will be the most sensitive WIMP search ever performed

- Largest target mass ever realized in a DM direct detection experiment
- Very low backgrounds through strict material selection and designs

XENONnT will follow soon

- Upgrade design built-in from the ground up
- Re-use of most existing systems but one order of magnitude better limit
- Another order of magnitude sensitivity!

