

Introduction to VERITAS

- Support From:
 - NSF (USA)
 - DOE (USA)
 - Smithsonian Institution
 - NSERC (Canada)

- Array of four IACTs in Southern AZ, USA Employs ~100 Scientists in five countries Full Array Operations in Fall 2007 Upgrades:
- Move of T1 in Summer 2009
 - Level-2 Trigger upgrade in Fall 2011
- Camera Upgrade with High-QE PMTs in Summer 2012 See overview talk by Nahee Park

VERITASPerformance

- V6: Mid 2012 to Present
- Energy Range: 85 GeV to > 30 TeV
- Energy Resolution: 15-25%

- Sensitivity: 1% Crab in ~25 hrs
- Angular Resolution: <0.1 at 1 TeV (68%)
- Pointing Accuracy: Error < 50 arcsec

VERITASDark Matter Targets

Galactic Center (GC)

- Close By
- Large DM Content
- Astrophysical Backgrounds

Galaxy Clusters

- Distant
- Large DM Content
- Many are extended
- Astrophysical Background (?)

Benjamin Zitzer, TeVPa 2015

Dwarf Galaxies (DSphs) No Astrophysical Backgrounds Close By (~10's kpc) High M/L

Fermi Unidentified Objects

Potentially DM Subhalos?

VERITASDwarf Galaxy Observations

Dwarf	Live time	$\log_{10} J$	Significance	$F^{95\%}_{-12}$
	[hrs]	$[\text{GeV}^2\text{cm}^{-5}]$	[σ]	$[10^{-12} \text{cm}^{-2} \text{s}]$
Segue 1	92.0	$19.4_{-0.4}^{+0.3}$	0.7	0.34
Ursa Minor	60.4	$18.9\substack{+0.3\\-0.2}$	-0.1	0.37
Draco	49.8	$18.8 {\pm} 0.1$	-1.0	0.15
Boötes	14.0	$18.2 {\pm} 0.4$	-1.0	0.40
Willman 1	13.7	N/A	-0.6	0.39

- Five dSphs observed by VERITAS between 2007 and 2013
- Total of 230 hours
 - Deepest exposure on Segue 1: 92 hours
- No gamma-ray detection
- Flux upper limits above 300 GeV

Dark Matter Search/Limits from Dwarf Galaxies

- Using Methodology of Geringer-Sameth et al.
 - Phys. Rev. D 91, 083535 (2015)

 - galaxy
- J Factors from Geringer-Sameth et al.

Dark Matter Search/ Limits from Dwarf Galaxies

Dark Matter Search/ Limits from Dwarf Galaxies

- 216 hours combined limit
 - Willman 1 not used
 - Band represents uncertainty in J factor
 - Substantial improvement over 48 hour Segue 1 result

Dark Matter Subhalos

Observations of Andromeda/M31

VERITASElectron Spectrum

Energy [GeV]

- 296 hours of data between 2009 and 2012
- Electron-like events selected by boosted decision trees and extended likelihood fitting
- Agreement with other experiments within systematic uncertainties
 - Break at 710 ± 40 GeV
 - Index below break: $-3.2 \pm 0.1_{stat}$
 - Index above break: $-4.1 \pm 0.1_{stat}$
- Confirms the existence of at least one nearby CRE emitter
- Second high-statistics measurement of a break above 1 TeV

IGMF Measurements

Benjamin Zitzer, TeVPa 2015

- IGMF provides clues for large-scale structure and CR propagation
- Pair production with EBL produces cascade
 - Secondary particles bent by IGMF
 - Broadening of Blazar VHE emission
- No extension seen in 7 blazars
- Limits on IGMF magnitude set for model-dependent extended emission by comparing to simulated blazars and using 3D semi-analytical code
 - T. Weisgarber 2012
- VERITAS disfavors IGMF strength of ~10⁻¹⁴ G

 $\theta^2 [deg^2]$

Follow-up of Icecube events

- TeV emission associated with astrophysical flux of high-energy neutrino events provides evidence of the site of CR acceleration
- Observation of 22 $\nu_{\mu}-induced$ muon-track showers for combined 40 hours exposure
 - Muon tracks have good angular reconstruction: ~1 deg
- Flux upper limits in the 2-10% Crab level

Other VERITASDark Matter/Astroparticle Projects

- Dark Matter:
 - Archival Galaxy cluster search (<u>arXiv: 1508.07197</u>)
 - Galactic Center (<u>arXiv: 1508.07197</u>)
- Astroparticle topics:
 - Lorentz Invariance Violations (arXiv: 1307.8382)

 - Ultra-Luminous Radio Galaxies (<u>arXiv: 1508.05807</u>)

Measurement of positron fraction with Moon Shadow Observations (<u>arXiv: 1508.07197</u>)

Iron Spectrum measurements via Direct Cherenkov Method (<u>arXiv: 1508.05823</u>)

- Dark Matter/Astroparticle physics is a key science topic for VERITAS
- Active and diverse group within the collaboration
- VERITAS (and IACTs in general) can provide important dark matter physics constraints (or possible detection) at masses of ~1 TeV and above, particularly with Sommerfeld boosts
- Provide input on many areas of New/Fundamental physics

