

Next Steps in

The Future of High-energy Neutrino Astronomy

John Kelley Univ. of Wisconsin–Madison October 30, 2015

TeV Particle Astrophysics 2015 Kashiwa, Japan

Neutrinos as Messengers

- Above 100 TeV, neutrinos are the option for astronomy
- Benefits:
 - point back to source
 - unimpeded by intervening matter + photon fields

- difficult to detect
- fluxes very low at high energies

Cosmic Ray Acceleration and Neutrino Production

Fermi shock acceleration: $dN/dE \sim E^{-2}$

$$p + \gamma \rightarrow p + \pi^{0}, n + \pi^{+}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

1:2:0 flavor ratio at source

Similar processes (incl. p+p) happening in:

- cosmic ray sources (ambient light, gas)
- outer space (cosmic microwave background)
- Earth's atmosphere (N, O, etc. nucleus)

astrophysical source neutrinos cosmogenic neutrinos atmospheric neutrinos

Water/Ice Cherenkov Neutrino Detectors

Neutrino Astronomy "First Light"

J. Kelley, TeVPA 2015

Looking Forward

disfavored from lack of point-source discovery

see also: K. Murase, this meeting Ahlers and Halzen, arXiv:1406.2160

- lceCube has much more to contribute
 - flux characterization beyond simple power law
 - subdominant Galactic contribution?
 - flavor ratio?
 - bright, rare extragalactic point source sources within reach in a few years?
 - renewed emphasis on multimessenger program
- Dim + populous sources will require larger detectors (~10 km³)
- First detection of cosmogenic neutrinos may require even larger detectors (~100 km³)

Future Water/Ice Cherenkov Neutrino Detectors

J. Kelley, TeVPA 2015

Lake Baikal: GVD

- First of 12 clusters operational since April 2015
- Plan: completion by 2020
- Instrumented volume: ~0.4 km³

courtesy C. Spiering

KM3NeT

- Multi-site array in the deep Mediterranean
 - ARCA (E > 100 GeV): 2
 "blocks" at Italian site, ~1 km³
 - ORCA (I < E < 100 GeV): I block at French site
- Phase I funded and under construction
 - 10% ARCA, 5% ORCA
 - completion 2017
- Phase 2: completion in 2020+
 additional 95M€
- Phase 3: ARCA x3 (6 blocks)

KM3NeT/ARCA Sensitivity

V. Van Elewyck, this meeting

- Point-source sensitivity enhanced by ~0.2° angular resolution (low scattering length in water)
- Cascade directional resolution ~2°
- Possible sensitivity to Galactic sources in 2–3 years

IceCube Gen2

- Neutrino facility including high-energy array (HEA), low-energy infill (PINGU), surface array / veto, and radio
- HEA: I 0x instrumented volume of IceCube
- Increased energy threshold (OK)
- Approximately the same budget (~\$300M)

IceCube–Gen2 Sensor Development

arXiv:1510.05228

baseline: Gen2 DOM 10'' HQE PMT

mDOM 24 3'' PMTs

Surface Veto

- Extended surface array can veto atmos. muons and atmos. neutrinos
- Signal rate improvement of +100% in Southern Hemisphere
- Logistics and necessary coverage still being optimized

IceCube Gen2 Sensitivity

E. Blaufuss, ICRC2015

- 10 years of Gen2 HEA equivalent to > 200 years of IceCube
- Construction: 2021–26
 (2-drill scenario)
- White paper: arXiv: 1412.5106

To the Teraton Scale: Radio Neutrino Detectors

. Kelley, TeVPA 2015

Radio Neutrino Detection

- Optical technique is not very scalable beyond O(10 km3)
- Askaryan effect: charge excess from particle shower produces a coherent radio pulse
- Energy threshold determined by average distance to vertex + thermal noise, generally > 10 PeV
- Cold ice is exceptionally radio-transparent ($L_{atten} \sim 1 \text{ km}$) 10/30/15

ANITA

- Long-duration balloon-borne radio array launched from McMurdo
- Lots of target material; flight time 20–30 days

ANITA Neutrino Searches

- Flight 2 (2009): I event on background of 0.97±42
- UHECR air showers detected via geomagnetic emission
- Third flight 2014–15; analysis underway

ARIANNA

- I 296 autonomous antenna stations on the Ross Ice Shelf
- Radio reflections from ice-sea boundary increase acceptance
- 7-station HRA deployed and taking data

Askaryan Radio Array (ARA)

M DuVernois, this meeting

ARA Status

- Next deployment: 2016–17 or 17–18 polar season
 Cost of total project: ~\$10M
- Cost of total project: ~\$10M

10/30/15

ARA and HRA Neutrino Searches

- Analyses reject thermal and anthropogenic noise
- Directional resolution of both arrays is ~1°

ARA event candidate directions

Upper Limits and Future Sensitivity

all experiments: no cosmogenic neutrinos yet

courtesy T. Meures all-flavor limits; decade energy bins

> ANITA-II: arXiv: 1011.5004

ARA: arXiv:1507.08991

ARIANNA HRA: arXiv 1410.7352

Auger: arXiv: 1504.05397

IceCube EHE: see also A. Ishihara, this conference

Innovative Concepts

Bridging the Energy Gap

- Lower radio threshold to 1 PeV to detect diffuse neutrino flux
- Phased-array trigger: simultaneous high-gain beams in all zenith angle sectors
- Field testing in Greenland (GNO program) 10/30/15 J. Kelley, TeVPA 2015

ExaVolt Antenna (EVA)

Gorham et al., arXiv:1102.3883

- NASA super-pressure balloon with *integrated* toroidal antenna
- Sensitive to wider range of mixed-composition UHECR models
- 3-year design study funded (1/5 scale)

Neutrino Telescope Array (NTA)

G. Hou, arXiv: 1409.0477

- Concept for dedicated ν_{τ} observatory
- Cherenkov-fluorescence telescope search for τinduced air showers
- Mountains provide both CR shield and neutrino target
- Peak sensitivity ~30 PeV

Summary

- IceCube discovery of a diffuse astrophysical neutrino flux has energized the field of neutrino astronomy
- Large new optical arrays will push forward the search for neutrino point sources
 - KM3NeT/ARCA Phase I under construction
 - IceCube–Gen2 design studies in full swing
- Radio technique allow extension to 100 km² and beyond
 - prototype arrays taking data (ARIANNA, ARA)
 - Iowering energy threshold may allow detection of diffuse astrophysical flux

Backup

Neutrino Point Source Limits

IceCube Gen2 Angular Resolution

- Track directional resolution 0.3-0.5° (highest-quality events: 0.1°)
- Improvements from reconstruction methods still expected

J. Kelley, TeVPA 2015

Impact of Composition

Ahlers & Halzen, aXiv:1208.4181

ARIANNA Station Livetime

S. Barwick / A. Nelles, ICRC2015

Site B station, with battery, achieves ~92% livetime, 8% loss from data transmission Site C station, gaps due to un-transferred data. Requires sun >2-5° above horizon

ARA 2013 Livetime

arXiv:1507.08991

NTA Diffuse Sensitivity

G. Hou, arXiv:1409.0477

