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Milky Way dwarfs as Dark Matter detection Labs

Ideal targets for detecting a DM signal (prompt or radiative emission 
from DM particle pair annihilations or decays):

• objects with fairly large 
DM densities, located fairly 
close to the Sun (about 10 to 
200 kpc);

About 35 (tentatively) identified; 
8 with adequate kinematic data samples, 
the so-called “classical” dwarfs.

• intrinsic backgrounds from 
“standard” astrophysical 
sources below detection 
sensitivities (?) 
+ low Milky Way 
foregrounds (intermediate 
to high latitude locations).



Ideal Labs also to set limits on particles physics properties?
No firmly established detection so far (tentative γ-ray signal in Reticulum 2, 
Geringer-Sameth et al. 2015 + Koushiappas talk). Upper limits on fluxes 
reliably projected on upper limits on particle DM parameters?

For γ-rays and DM 
annihilations, only one 
“astro” factor:

Fermi Coll. 2015: γ-ray limits excluding 
WIMPs thermal cross section lighter than 
100 GeV!

For the classical dwarfs 1-σ 
uncertainties often 
assumed within factors of 
about 1.5  ≪ the “astro” 
uncertainty in any other 
indirect detection tool!
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Mass models for dwarf galaxies
A stellar population as tracer of the gravitational potential (i.e. the DM 
distribution) assuming dynamical equilibrium. Velocity moments of the 
collision-less Boltzmann equation. Spherical symmetry for all components:
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Usually solved for the radial pressure:                               in terms of the 
3 unknown functions:

p(r) ≡ ν(r)σ2
r(r)

M(r)

the star density 
profile

the star anisotropy 
profile

the DM mass 
profile

circular orbits
radial orbits

isotropy: β(r) = 0

 ⇒   a single Jeans equation



Mass models for dwarf galaxies (ii)

the star surface brightness

The 3 unknowns:        ,         and           can be mapped into 2 observables: ν(r) M(r)β(r)

the l.o.s. velocity dispersion
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Fig. 1.— Projected velocity dispersion profiles for eight bright dSphs, from Magellan/MMFS and MMT/Hectochelle data. Over-plotted are
profiles calculated from isothermal, power-law, NFW and cored halos considered as prospective “universal” dSph halos (Section 5). For each type
of halo we fit only for the anisotropy and normalization. All isothermal, NFW and cored profiles above have normalization Vmax ∼ 10 − 20 km
s−1—see Table 3. All power-law profiles have normalization M300 ∼ [0.5 − 1.5] × 107M".

by α and γ. Thus the parameter Vmax sets the normal-
ization of the mass profile.

The normalization can equivalently be set by specify-
ing, rather than Vmax, the enclosed mass at some par-
ticular radius. For radius x, the enclosed mass M(x)
specifies M(r0) according to
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S08 demonstrate that for most dSphs the Jeans anal-
ysis can tightly constrain M300. Here, in addition to
M300, we shall consider the masses within two alterna-
tive radii as free parameters with which to normalize the
mass profile. Specifically, we consider the mass within
the half-light radius, M(rhalf ), and the mass within the
outermost data point of the empirical velocity dispersion
profile, M(rlast).

3.4. Markov-Chain Monte Carlo Method

In order to evaluate a given halo model, we com-
pare the projected velocity dispersion profile, σp(R),
from Equation 3 to the empirical profile, σV0

(R), dis-
played in Figure 1. For a given parameter set S ≡
{− log(1 − β), log MX , log r0, α, γ}, where MX is one of
{Vmax, M(rhalf ), M300 or M(rlast)}, we adopt uniform
priors and consider the likelihood
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where Var[σV0

(Ri)] is the square of the error associated
with the empirical dispersion.

Our mass models have five free parameters (four halo
parameters plus one anisotropy parameter). In order
to explore the large parameter space efficiently, we em-

e.g.:  Walker et al. 2009

Ursa Minor



Mass models for dwarf galaxies (iii)
The mapping is usually done introducing parametric forms for:
ν(r)        - Plummer, King, Sersic ... profile as supported from star profiles in 
other observed systems;

β(r) - as an arbitrary choice, since there is no real observational handle.

M(r)  [or DM        ] - from N-body simulations or DM phenomenology;ρ(r)

and performing:
- a frequentist fit of         to data on         ;ν(r) I(R)

- a Markov-Chain Monte Carlo sampling of a likelihood defined from 
data on                 : posteriors on           [or         ] parameters after 
marginalization over          parameters [prior choice for the latter again 
arbitrary]. The derived posterior for     (and its small error bar) is what 
will enter as an input for particle physics limits.      

σ2
l.o.s.(R) M(r) ρ(r)

β(r)
J

How much should we trust this procedure?



are in a form which resembles the Abel integral transform for the pair           :

Mass models: our approach
the star surface brightness the l.o.s. velocity dispersion
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Actually                               . Analogously you can invert also the projected 
dynamical pressure                                    and find:

I(R2) ↔ �I(r2) = ν(r)

P (R2) ≡ I(R)σ2
l.o.s.(R)

M(r) =
r2

GN
�I(r)

�
−d �P

dr
[1− aβ(r)] +

aβ(r)

r
· bβ(r)

�
�P (r) +

� ∞

r
dr̃

aβ(r̃)

r̃
Hβ(r, r̃) �P (r̃)

��

having defined: aβ(r) ≡ − β

1− β

Hβ(r, r̃) ≡ exp

�� r̃

r
dr�

aβ(r�)

r�

�

see also: Wolf et al. 2010 + Mamon & Boué 2009.

bβ(r) = 3− aβ(r)−
d log aβ
d log r



Mass models: our approach (ii)
Now: model           and                  with a direct parametric fit on data for 
these observables. E.g.: assume for the surface brightness a Plummer model:  

I(R) σl.o.s.(R)
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and fit the half-light radius        , i.e. in Ursa Minor:                           .R1/2 R1/2 � 0.3 kpc

For the line-of-sight projected 
velocity dispersion in general 
data are less constraining and 
one can consider different 
possibilities, e.g.:

The Abel transforms          and         are computed numerically, and then one 
can perform a direct projection of what you do (not) know about         into a 
prediction for          ,         and    , and hence have a more direct assessment of 
uncertainties in the predictions for dark matter signals.
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We have a numerical tool that works:

Sample check: assume given           [or        ] and         , compute for these the 
projected dynamical pressure         , Abel transform the latter into         and 
use this to retrieve           [or        ].    

σl.o.s.(R)The check shown here is on the best fit of Ursa Minor                 :            

�P (r)
β(r)M(r) ρ(r)

P (r)
M(r) ρ(r)

Burkert profile           NFW profile           



Direct check on the existence of a mass estimators:
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It has been claimed, first from MCMC scans (Strigari et al. 2008) and then 
with closer look to features in the Jeans eq. solution (Wolf et al. 2010) that 
there is a radius     such that             is nearly independent on choice of         
(                          for a Plummer surface brightness).

r� M(r�) β(r)
r� � 1.23R1/2

Assuming, e.g., a flat velocity dispersion                                  as well as a 
constant                  , from the mass inversion formula we find:

σl.o.s.(R) = const.
β(r) = βc
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Mass profiles in Ursa Minor as a function of constant β:
In practice, agnostic mass reconstruction with our inversion formula not 
always give physical results. In a concrete example we need to restrain (a 
posteriori) to cases in which we get                  ,                      and                    :M(r) > 0 dM/dr > 0 dρ/dr ≤ 0

βc<<
0

0

-∞

Burkert profile: imposing 
radial orbits gives unphysical 
results at low radii

Span of results for 4 different 
possible fits of the line-of-sight 
projected velocity dispersion



Mass profiles in Ursa Minor as a function of constant β:
In practice, agnostic mass reconstruction with our inversion formula not 
always give physical results. In a concrete example we need to restrain (a 
posteriori) to cases in which we get                  ,                      and                    :M(r) > 0 dM/dr > 0 dρ/dr ≤ 0

NFW fitBurkert fit

ρ(r) ∝ r−2β(r) = −∞

  - for                                 , Plummer          + β(r) = 0σl.o.s.(R) = const. ρ(r) � constI(R)
r → 0

  - for                                 , Plummer          +σl.o.s.(R) = const. I(R)
r → 0

⇒

⇒
hole

+ black 

Sample limits:



J-factors in Ursa Minor as a function of constant β:
In line-of-sight integrals: J ≡ 1
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we conservative set         to a constant at radii smaller than the radius at 
which                  can be measured (smallest radius in our data binning): 
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Conclusions:
We have presented a method to map solutions of the Jeans equation for 
dynamical-equilibrium spherically-symmetric systems onto observables for 
dwarf galaxies which keeps track of the indetermination related to the 
anisotropy of the dynamical tracer population.

We have checked the claim of existence of a mass estimator for dwarf 
galaxies, finding that indeed, despite some caveats, it cannot be grossly 
violated.  

On the other hand, we have found that the approach to derive J-factor 
uncertainties by marginalizing over a predefined parametric forms for the 
functions entering in the Jeans equation, does not fully account for the 
uncertainties related the anisotropy of the dynamical tracer population.  


