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Milky Way dwarfs as Dark Matter detection Labs

I deal targets for detecting a DM signal (prompt or radiative emission
from DM particle pair annihilations or decays):
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e intrinsic backgrounds from
“standard” astrophysical
sources below detection
sensitivities (?)

+ low Milky Way
foregrounds (intermediate
to high latitude locations).
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About 35 (tentatively) identified;
8 with adequate kinematic data samples,
the so-called “classical” dwarfs.



Ideal Labs also to set limits on particles physics properties?

No firmly established detection so far (tentative y-ray signal in Reticulum 2,

Geringer-Sameth et al. 2015 + Koushiappas talk). Upper limits on fluxes
reliably projected on upper limits on particle DM parameters?

For y-rays and DM
annihilations, only one
“astro” factor:

For the classical dwarfs 1-0
uncertainties often
assumed within factors of
about 1.5 < the “astro”

uncertainty in any other
indirect detection tool!
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Mass models for dwarf galaxies

A stellar population as tracer of the gravitational potential (i.e. the DM
distribution) assuming dynamical equilibrium. Velocity moments of the
collision-less Boltzmann equation. Spherical symmetry for all components:

= a single Jeans equation
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Usually solved for the radial pressure: p(r) = v(r)o
3 unknown functions:

the star density the star anisotropy the DM mass
profile profile profile
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Mass models for dwarf galaxies (i)

The 3 unknowns: v(r), B(r) and M (1) can be mapped into 2 observables:

the star surface brightness

I(R) = Z/ROO \/TZZT_TRQ v(r)
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Mass models for dwarf galaxies (iii)

The mapping is usually done introducing parametric forms for:

v(r) - Plummer, King, Sersic ... profile as supported from star profiles in
other observed systems;

M (r){or DM p(r)] - from N-body simulations or DM phenomenology;

B(r) - as an arbitrary choice, since there is no real observational handle.
and performing:

- a frequentist fit of v(r) to data on I(R);

)

- a Markov-Chain Monte Carlo sampling of a likelihood defined from
dataon o7, . (R): posteriors on M (r) [or p(r) | parameters after
marginalization over B(r) parameters {prior choice for the latter again
arbitrary}l. The derived posterior for J (and its small error bar) is what
will enter as an input for particle physics limits.

How much should we trust this procedure?



Mass models: our approach

the star surface brightness the l.o.s. velocity dispersion
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Actually I(R?) +» I(r?) = v(r). Analogously you can invert also the projected
dynamical pressure P(R?) = I(R)¢7, . (R) and find:
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see also: Wolf et al. 2010 + Mamon & Boué 2009.




Mass models: our approach (ii)

Now: model I(R) and 07, s.(R) with a direct parametric fit on data for
these observables. E.g.: assume for the surface brightness a Plummer model:
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and fit the half-light radius R, i.e. in Ursa Minor: R,,» =~ 0.3 kpc.

I(R)
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For the line-of-sight projected
velocity dispersion in general
data are less constraining and
one can consider different
possibilities, e.g.:
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The Abel transforms P(r) and I (7) are computed numerically, and then one
can perform a direct projection of what you do (not) know about 5(r) into a
prediction for M(r), p(r) and J, and hence have a more direct assessment of
uncertainties in the predictions for dark matter signals.



We have a numerical tool that works:

Sample check: assume given M (r){or p(r)} and B(r), compute for these the
projected dynamical pressure P(r), Abel transform the latter into P(r)and
use this to retrieve M (r) {or p(7)1.

The check shown here is on the best fit of Ursa Minor 07.0.5. (R):
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Direct check on the existence of a2 mass estimators:

It has been claimed, first from MCMC scans (Strigari et al. 2008) and then

with closer look to features in the Jeans eq. solution (Wolf et al. 2010) that
there is a radius r, such that M (r,) is nearly independent on choice of 5(r)
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1.23 Ry /5 for a Plummer surface brightness).

Assuming, e.g., a flat velocity dispersion 0,5 (R) = const. as well as a
constant B(r) = (., from the mass inversion formula we find:
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Direct check on the existence of a mass estimators:
It has been claimed, first from MCMC scans (Strigari et al. 2008) and then

with closer look to features in the Jeans eq. solution (Wolf et al. 2010) that

there is a radius r, such that M (r,) is nearly independent on choice of 5(r)
(ry ~ 1.23 Ry /9 for a Plummer surface brightness).

Assuming, e.g., a flat velocity dispersion 0,5 (R) = const. as well as a
constant B(r) = (., from the mass inversion formula we find:
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Mass profiles in Ursa Minor as a function of constant [:

In practice, agnostic mass reconstruction with our inversion formula not
always give physical results. In a concrete example we need to restrain (a
posteriori) to cases in which we get M (r) > 0, dM/dr > 0 and dp/dr <O0:
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Mass profiles in Ursa Minor as a function of constant [:

In practice, agnostic mass reconstruction with our inversion formula not
always give physical results. In a concrete example we need to restrain (a
posteriori) to cases in which we get M (r) > 0, dM/dr > 0 and dp/dr <O0:
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J-tactors in Ursa Minor as a function of constant [3:

In line-of-sight integrals: J= il / do) / dl p% (1)
A l.o.s.

A

we conservative set p(7) to a constant at radii smaller than the radius at
which 07,.s.(R) can be measured (smallest radius in our data binning):
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Conclusions:

We have presented a method to map solutions of the Jeans equation for
dynamical-equilibrium spherically-symmetric systems onto observables for
dwarf galaxies which keeps track of the indetermination related to the
anisotropy of the dynamical tracer population.

We have checked the claim of existence of a mass estimator for dwarf
galaxies, finding that indeed, despite some caveats, it cannot be grossly
violated.

On the other hand, we have found that the approach to derive J-factor
uncertainties by marginalizing over a predefined parametric forms for the
functions entering in the Jeans equation, does not fully account for the
uncertainties related the anisotropy of the dynamical tracer population.




