Dark matter density profiles in dwarf satellites

Piero Ullio SISSA & INFN Trieste

Based on PU & M. Valli, to appear.

TeV Particle Astrophysics 2015, Kashiwa, Japan, October 27, 2015

Milky Way dwarfs as Dark Matter detection Labs

Ideal targets for **detecting** a DM signal (prompt or radiative emission from DM particle pair annihilations or decays):

objects with fairly large DM densities, located fairly close to the Sun (about 10 to 200 kpc);

intrinsic backgrounds from "standard" astrophysical sources below detection sensitivities (?)
+ low Milky Way foregrounds (intermediate to high latitude locations).

About 35 (tentatively) identified; 8 with adequate kinematic data samples, the so-called "classical" dwarfs. Ideal Labs also to set limits on particles physics properties? No firmly established detection so far (tentative γ -ray signal in Reticulum 2, **Geringer-Sameth et al. 2015** + Koushiappas talk). Upper limits on fluxes reliably projected on **upper limits** on particle DM parameters?

For γ-rays and DM annihilations, only one "astro" factor:

$$J \equiv \frac{1}{\Delta\Omega} \int_{\Delta\Omega} d\Omega \int_{l.o.s.} dl \ \rho_{DM}^2(l)$$

For the classical dwarfs $1-\sigma$ uncertainties often assumed within factors of about $1.5 \ll$ the "astro" uncertainty in any other indirect detection tool!

Fermi Coll. 2015: γ-ray limits excluding WIMPs thermal cross section lighter than 100 GeV!

Mass models for dwarf galaxies

A stellar population as tracer of the gravitational potential (i.e. the DM distribution) assuming <u>dynamical equilibrium</u>. <u>Velocity moments</u> of the collision-less Boltzmann equation. <u>Spherical symmetry</u> for all components:

 \Rightarrow a single Jeans equation

$$\frac{d}{dr}(\nu\sigma_r^2) + \frac{2\beta(r)}{r}\nu\sigma_r^2 = -\nu\frac{M(r)}{r^2}$$

Usually solved for the radial pressure: $p(r) \equiv \nu(r)\sigma_r^2(r)$ in terms of the 3 unknown functions:

Mass models for dwarf galaxies (ii)

The 3 unknowns: $\nu(r)$, $\beta(r)$ and M(r) can be mapped into 2 observables:

the star surface brightness

$$I(R) = 2 \int_{R}^{\infty} \frac{dr r}{\sqrt{r^2 - R^2}} \nu(r)$$

the l.o.s. velocity dispersion

$$\sigma_{l.o.s.}^{2}(R) = \frac{2}{I(R)} \int_{R}^{\infty} \frac{dr r}{\sqrt{r^{2} - R^{2}}} \left(1 - \beta(r) \frac{R^{2}}{r^{2}}\right) p(r)$$

Mass models for dwarf galaxies (iii)

The mapping is usually done introducing parametric forms for: $\nu(r)$ - Plummer, King, Sersic ... profile as supported from star profiles in other observed systems;

M(r) [or DM $\rho(r)$] - from N-body simulations or DM phenomenology; $\beta(r)$ - as an arbitrary choice, since there is no real observational handle. and performing:

- a frequentist fit of $\nu(r)$ to data on I(R);

- a Markov-Chain Monte Carlo sampling of a likelihood defined from data on $\sigma_{l.o.s.}^2(R)$: posteriors on M(r) [or $\rho(r)$] parameters after marginalization over $\beta(r)$ parameters [prior choice for the latter again arbitrary]. The derived posterior for J (and its small error bar) is what will enter as an input for particle physics limits.

How much should we trust this procedure?

Mass models: our approach

the star surface brightness the l.o.s. velocity dispersion

$$I(R) = 2 \int_{R}^{\infty} \frac{dr r}{\sqrt{r^2 - R^2}} \nu(r) \qquad \qquad \sigma_{l.o.s.}^2(R) = \frac{2}{I(R)} \int_{R}^{\infty} \frac{dr r}{\sqrt{r^2 - R^2}} \left(1 - \beta(r) \frac{R^2}{r^2}\right) p(r)$$

are in a form which resembles the Abel integral transform for the pair $f \leftrightarrow \hat{f}$:

$$f(x) = \mathbf{A}[\widehat{f}(y)] = \int_x^\infty \frac{dy}{\sqrt{y-x}} \,\widehat{f}(y) \quad \longleftrightarrow \quad \widehat{f}(y) = \mathbf{A}^{-1}[f(x)] = -\frac{1}{\pi} \int_y^\infty \frac{dx}{\sqrt{x-y}} \,\frac{df}{dx}$$

Actually $I(R^2) \leftrightarrow \widehat{I}(r^2) = \nu(r)$. Analogously you can invert also the projected dynamical pressure $P(R^2) \equiv I(R) \sigma_{l.o.s.}^2(R)$ and find:

$$M(r) = \frac{r^2}{G_N \,\widehat{I}(r)} \left\{ -\frac{d\widehat{P}}{dr} [1 - a_\beta(r)] + \frac{a_\beta(r)}{r} \cdot b_\beta(r) \left[\widehat{P}(r) + \int_r^\infty d\widetilde{r} \frac{a_\beta(\widetilde{r})}{\widetilde{r}} \mathcal{H}_\beta(r, \widetilde{r}) \,\widehat{P}(\widetilde{r}) \right] \right\}$$

having defined:
$$a_{\beta}(r) \equiv -\frac{\beta}{1-\beta}$$
 $b_{\beta}(r) = 3 - a_{\beta}(r) - \frac{d\log a_{\beta}}{d\log r}$
 $\mathcal{H}_{\beta}(r,\tilde{r}) \equiv \exp\left(\int_{r}^{\tilde{r}} dr' \frac{a_{\beta}(r')}{r'}\right)$

see also: Wolf et al. 2010 + Mamon & Boué 2009.

Mass models: our approach (ii)

Now: model I(R) and $\sigma_{l.o.s.}(R)$ with a direct parametric fit on data for these observables. E.g.: assume for the surface brightness a Plummer model:

$$I(R) = \frac{L_0}{\pi R_{1/2}^2} \frac{1}{(1 + R^2/R_{1/2}^2)^2}$$

and fit the half-light radius $R_{1/2}$, i.e. in Ursa Minor: $R_{1/2} \simeq 0.3$ kpc.

For the line-of-sight projected velocity dispersion in general data are less constraining and one can consider different possibilities, e.g.:

The Abel transforms $\widehat{P}(r)$ and $\widehat{I}(r)$ are computed numerically, and then one can perform a direct projection of what you do (not) know about $\beta(r)$ into a prediction for M(r), $\rho(r)$ and J, and hence have a more direct assessment of uncertainties in the predictions for dark matter signals.

We have a numerical tool that works:

Sample check: assume given M(r) [or $\rho(r)$] and $\beta(r)$, compute for these the projected dynamical pressure P(r), Abel transform the latter into $\hat{P}(r)$ and use this to retrieve M(r) [or $\rho(r)$].

The check shown here is on the best fit of Ursa Minor $\sigma_{l.o.s.}(R)$:

Direct check on the existence of a mass estimators: It has been claimed, first from MCMC scans (Strigari et al. 2008) and then with closer look to features in the Jeans eq. solution (Wolf et al. 2010) that there is a radius r_{\star} such that $M(r_{\star})$ is nearly independent on choice of $\beta(r)$ $(r_{\star} \simeq 1.23 R_{1/2}$ for a Plummer surface brightness). Assuming, e.g., a flat velocity dispersion $\sigma_{l.o.s.}(R) = \text{const.}$ as well as a

constant $\beta(r) = \beta_c$, from the mass inversion formula we find:

Direct check on the existence of a mass estimators: It has been claimed, first from MCMC scans (Strigari et al. 2008) and then with closer look to features in the Jeans eq. solution (Wolf et al. 2010) that there is a radius r_{\star} such that $M(r_{\star})$ is nearly independent on choice of $\beta(r)$ $(r_{\star} \simeq 1.23 R_{1/2}$ for a Plummer surface brightness). Assuming, e.g., a flat velocity dispersion $\sigma_{l.o.s.}(R) = \text{const.}$ as well as a

constant $\beta(r) = \beta_c$, from the mass inversion formula we find:

Mass profiles in Ursa Minor as a function of constant β :

In practice, agnostic mass reconstruction with our inversion formula not always give physical results. In a concrete example we need to restrain (a posteriori) to cases in which we get M(r) > 0, dM/dr > 0 and $d\rho/dr \le 0$:

Burkert profile: imposing radial orbits gives unphysical results at low radii

Span of results for 4 different possible fits of the line-of-sight projected velocity dispersion

0.2

Non-parametric fit

0.6

0.8

Linear fit Constant fit

0.4

r [kpc]

Mass profiles in Ursa Minor as a function of constant β :

In practice, agnostic mass reconstruction with our inversion formula not always give physical results. In a concrete example we need to restrain (a posteriori) to cases in which we get M(r) > 0, dM/dr > 0 and $d\rho/dr \le 0$:

Sample limits:

- for $\sigma_{l.o.s.}(R) = \text{const.}$, Plummer $I(R) + \beta(r) = 0 \implies \rho(r) \stackrel{r \to 0}{\simeq} \text{const}$ - for $\sigma_{l.o.s.}(R) = \text{const.}$, Plummer $I(R) + \beta(r) = -\infty \implies \rho(r) \stackrel{r \to 0}{\propto} r^{-2} + \text{black}$

hole

J-factors in Ursa Minor as a function of constant β :

In line-of-sight integrals: $J \equiv \frac{1}{\Delta \Omega} \int_{\Delta \Omega} d\Omega \int_{l.o.s.} dl \rho_{DM}^2(l)$

we conservative set $\rho(r)$ to a constant at radii smaller than the radius at which $\sigma_{l.o.s.}(R)$ can be measured (smallest radius in our data binning):

Conclusions:

We have presented a method to map solutions of the Jeans equation for dynamical-equilibrium spherically-symmetric systems onto observables for dwarf galaxies which keeps track of the indetermination related to the anisotropy of the dynamical tracer population.

We have checked the claim of existence of a mass estimator for dwarf galaxies, finding that indeed, despite some caveats, it cannot be grossly violated.

On the other hand, we have found that the approach to derive J-factor uncertainties by marginalizing over a predefined parametric forms for the functions entering in the Jeans equation, does not fully account for the uncertainties related the anisotropy of the dynamical tracer population.