
Astrophysical neutrinos in 
IceCube 

Jakob van Santen 
TeVPA 2015, Kashiwa



TeVPA 2015 - Jakob van Santen - Astrophysical neutrinos in IceCube

What do we know about the cosmic rays? 2



TeVPA 2015 - Jakob van Santen - Astrophysical neutrinos in IceCube

What do we know about the cosmic rays? 2
27. Cosmic rays 15

 [eV]E
1310 1410 1510 1610 1710 1810 1910 2010

]
-1

 sr
-1  s

-2
 m

1.
6

 [G
eV

F(
E)

2.
6

E

1

10

210

310

410

Grigorov
JACEE
MGU
Tien-Shan
Tibet07
Akeno
CASA-MIA
HEGRA
Fly’s Eye
Kascade
Kascade Grande
IceTop-73
HiRes 1
HiRes 2
Telescope Array
Auger

Knee

2nd Knee

Ankle

Figure 27.8: The all-particle spectrum as a function of E (energy-per-nucleus)
from air shower measurements [88–99,101–104].

giving a result for the all-particle spectrum between 1015 and 1017 eV that lies toward
the upper range of the data shown in Fig. 27.8. In the energy range above 1017 eV, the
fluorescence technique [100] is particularly useful because it can establish the primary
energy in a model-independent way by observing most of the longitudinal development
of each shower, from which E0 is obtained by integrating the energy deposition in
the atmosphere. The result, however, depends strongly on the light absorption in the
atmosphere and the calculation of the detector’s aperture.

Assuming the cosmic-ray spectrum below 1018 eV is of galactic origin, the knee could
reflect the fact that most cosmic accelerators in the galaxy have reached their maximum
energy. Some types of expanding supernova remnants, for example, are estimated not to
be able to accelerate protons above energies in the range of 1015 eV. Effects of propagation
and confinement in the galaxy [106] also need to be considered. The Kascade-Grande
experiment [98] has reported observation of a second steepening of the spectrum near
8 × 1016 eV, with evidence that this structure is accompanied a transition to heavy
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2. Recent physics results from NT200

The physics program of the Baikal experiment covers the
typical spectrum of high energy neutrino telescopes [5–10]. In
this paper we review selected astroparticle physics results from
the long-term operation of NT200, in particular, an improved limit
on the diffuse astrophysical neutrino flux, upper limits on the
muon flux from annihilation of hypothetical weakly interacting
massive particles (WIMPs) in the Sun, and a limit on the neutrino
flux associated with gamma-ray bursts.

2.1. A search for extraterrestrial high-energy neutrinos

Our search for high energy extraterrestrial neutrinos is based
on studies of bright cascades detected in the telescope NT200. A
full cascade reconstruction algorithm (for vertex, direction, and
cascade energy) was applied to the 1038 live days of data taken
with NT200 in 1998–2002. Cuts were then placed on this
reconstructed cascade energy to select neutrino-induced events.
Within systematic and statistical uncertainties there are no
significant excess above the expected background from atmo-
spheric muons (see Fig. 2). For an E!2 behaviour of neutrino
spectrum a 90% C.L. upper limit on the neutrino flux of all flavours
obtained with the Baikal neutrino telescope NT200 is:
Ev

2Fo2.9"10!7 cm!2 s!1sr!1 GeV, for 20 TeVoEvo20 PeV.

2.2. A search for WIMP neutrinos from the Sun

A possible signal from WIMP annihilation in the Sun would
appear as an excess of upward going muons over atmospheric
neutrinos arriving from the direction of Sun. We have applied two
sorts of quality cuts, optimized for high and low WIMP masses.
We have selected 510 and 2376 upward going muon candidates in
the two data samples for 1007 live days. The distributions of

correlation angles between these muons and the Sun were
compared to the corresponding off-source background expecta-
tion. In Fig. 3 we show the results for the sample of larger
statistics.

No indications for excess muons were found. The 90% C.L.
upper limits on the muon flux from the Sun are obtained as
functions of the WIMP mass for b anti-b (soft channel) and W+W!

(hard channel) neutrino energy spectrum [11]. For WIMP masses
4500 GeV the limit depends weakly on the WIMP mass and is
Fo3"103 km!2 yr!1. The presented results are preliminary,
and allow estimating the NT200 sensitivity for high energy
neutrinos from DM annihilation processes in the Sun.

Fig. 1. The Baikal Telescope NT200+ and the GVD prototype string with 12 OM.

Fig. 2. Reconstructed cascade energy distribution for data (dots) and for
MC-generated atmospheric muons (boxes); true MC energy distribution given as
histogram.
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Fig. 3. Mismatch angle C (Muon/Sun): data and background (histogram).

A. Avrorin et al. / Nuclear Instruments and Methods in Physics Research A 626-627 (2011) S13–S18S14

•Lake Baikal 
•1/2000 km3 
•228 PMTs

NT-200+



TeVPA 2015 - Jakob van Santen - Astrophysical neutrinos in IceCube

The world’s neutrino telescopes 5

2. Recent physics results from NT200

The physics program of the Baikal experiment covers the
typical spectrum of high energy neutrino telescopes [5–10]. In
this paper we review selected astroparticle physics results from
the long-term operation of NT200, in particular, an improved limit
on the diffuse astrophysical neutrino flux, upper limits on the
muon flux from annihilation of hypothetical weakly interacting
massive particles (WIMPs) in the Sun, and a limit on the neutrino
flux associated with gamma-ray bursts.

2.1. A search for extraterrestrial high-energy neutrinos

Our search for high energy extraterrestrial neutrinos is based
on studies of bright cascades detected in the telescope NT200. A
full cascade reconstruction algorithm (for vertex, direction, and
cascade energy) was applied to the 1038 live days of data taken
with NT200 in 1998–2002. Cuts were then placed on this
reconstructed cascade energy to select neutrino-induced events.
Within systematic and statistical uncertainties there are no
significant excess above the expected background from atmo-
spheric muons (see Fig. 2). For an E!2 behaviour of neutrino
spectrum a 90% C.L. upper limit on the neutrino flux of all flavours
obtained with the Baikal neutrino telescope NT200 is:
Ev

2Fo2.9"10!7 cm!2 s!1sr!1 GeV, for 20 TeVoEvo20 PeV.

2.2. A search for WIMP neutrinos from the Sun

A possible signal from WIMP annihilation in the Sun would
appear as an excess of upward going muons over atmospheric
neutrinos arriving from the direction of Sun. We have applied two
sorts of quality cuts, optimized for high and low WIMP masses.
We have selected 510 and 2376 upward going muon candidates in
the two data samples for 1007 live days. The distributions of

correlation angles between these muons and the Sun were
compared to the corresponding off-source background expecta-
tion. In Fig. 3 we show the results for the sample of larger
statistics.

No indications for excess muons were found. The 90% C.L.
upper limits on the muon flux from the Sun are obtained as
functions of the WIMP mass for b anti-b (soft channel) and W+W!

(hard channel) neutrino energy spectrum [11]. For WIMP masses
4500 GeV the limit depends weakly on the WIMP mass and is
Fo3"103 km!2 yr!1. The presented results are preliminary,
and allow estimating the NT200 sensitivity for high energy
neutrinos from DM annihilation processes in the Sun.

Fig. 1. The Baikal Telescope NT200+ and the GVD prototype string with 12 OM.

Fig. 2. Reconstructed cascade energy distribution for data (dots) and for
MC-generated atmospheric muons (boxes); true MC energy distribution given as
histogram.

Cos (ψ)
0.95 0.96 0.97 0.98 0.99 1

E
ve

nt
s 

pe
r b

in

0

5

10

15

20

25

Fig. 3. Mismatch angle C (Muon/Sun): data and background (histogram).

A. Avrorin et al. / Nuclear Instruments and Methods in Physics Research A 626-627 (2011) S13–S18S14

•Lake Baikal 
•1/2000 km3 
•228 PMTs

NT-200+

!
storey

Figure 1. Schematic view of the ANTARES telescope. The inset shows a photograph of an optical
storey.

astrophysical objects: sources of high energy gamma rays, massive black holes and nearby
galaxies.

1.1 The ANTARES neutrino telescope

The ANTARES telescope [3] became fully operational in 2008. The detector comprises
twelve detection lines anchored at a depth of 2475 m and 40 km off the French coast near
Toulon. The detector lines are about 450 m long and host a total of 885 optical modules
(OMs), each comprising a 17” glass sphere which houses a 10” photomultiplier tube. The
OMs look downward at 45� in order to optimise the detection of upgoing, i.e. neutrino
induced, tracks. The geometry and size of the detector make it sensitive to extraterrestrial
neutrinos in the TeV-PeV energy range. A schematic layout of the telescope is shown in
Figure 1.

The neutrino detection is based on the induced emission of Cherenkov light by high
energy muons originating from charged current neutrino interactions inside or near the in-
strumented volume. All detected signals (hits) are transmitted via an optical cable to a shore
station, where a computer farm filter the data for coincident signals in several adjacent OMs.
The muon direction is then determined by maximising a likelihood which compares the time
of the hits with the expectation from the Cherenkov signal of a muon track. Details on the
event reconstruction are given in Ref. [7, 10].

Two main backgrounds for the search for astrophysical neutrinos can be identified: down-
going atmospheric muons which have been mis-reconstructed as upgoing and atmospheric
neutrinos originating in cosmic ray induced air showers at the opposite side of the Earth.
Depending on the requirements of the analysis both backgrounds can, at least partially, be
discriminated using various parameters such as the quality of the event reconstruction or

– 2 –
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•1/100 km3 
•885 PMTs
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twelve detection lines anchored at a depth of 2475 m and 40 km off the French coast near
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4-year dataset released 
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D. Xu, arXiv:1509.06212 (submitted to PRD)
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0.5 events expected in 3 years, 0 observed:

Dedicated search for characteristic τ decay signature

http://arxiv.org/abs/1509.06212
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Fully contained Partially contained

400 TeV180 TeV

Select cascade events near the edge and outside of the instrumented volume

H. Niederhausen, PoS(ICRC2015)1109

• Observed 172 events 
above 10 TeV 

• < 10% penetrating 
atmospheric muons 

• Only 40% overlap with 
starting-event samples



TeVPA 2015 - Jakob van Santen - Astrophysical neutrinos in IceCube

Combined analysis 20

L. Mohrmann, 
ApJ 809, 98 (2015)

Combine dedicated 
track, cascade, and 
starting event samples 
into a single analysis 

Increased sensitivity to: 
• Energy spectrum 
• Flavor composition

http://iopscience.iop.org/0004-637X/809/1/98
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L. Mohrmann, 
PoS(ICRC2015)1066

Harder spectrum 
with exponential 
cutoff mildly 
preferred to 
single power law 
(1.6σ)

http://pos.sissa.it/archive/conferences/236/1081/ICRC2015_1066.pdf
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a harder spectral index of −2.3 ± 0.3, but with larger
uncertainties. The result is compatible with the one obtained
here.60

We have tested the hypothesis of isotropy by fitting a model
with two astrophysical components, one in the northern and
one in the southern sky. Compared to the all-sky result, the fit
prefers a harder spectrum E 2.0 0.4

0.3( )( )- -
+

in the northern sky and a
slightly softer spectrum E 2.56 0.12( )- o in the southern sky with a
significance of 1.1σ (p = 13%). The result is not conclusive;
the discrepancy could be caused by a statistical fluctuation or
by an additional component that is present in only one of the
hemispheres (either an unmodeled background component or,
e.g., a component from the inner Galaxy, although a single
point source of the required strength to create the anisotropy
anywhere in that region has already been excluded (Adrián-
Martínez et al. 2014)). Further analysis including R.A.
information will be helpful in testing the hypothesis of isotropy
in the future.

Finally, we performed a measurement of the flavor
composition of the astrophysical neutrino flux. In a first test,
we have measured the electron-neutrino fraction at Earth in a
tribimaximal mixing scenario, with equal νμ and ντ fluxes at
Earth. The best-fit fraction is 0.18 ± 0.11, a value compatible
with the fractions expected from pion-decay sources (0.33) and
muon-damped sources (0.22), but incompatible with that
expected from neutron-beam sources (0.56), see Figure 7. In
a second, more general test, we allow the normalizations of all
three flavor components to vary independently and compare the
result to compositions expected for different astrophysical

scenarios in Figure 8. In agreement with the first test, we find
that pion-decay sources and muon-damped sources are well
compatible with our data, while neutron-beam sources are
disfavored with a significance of 3.6σ (p = 0.014%). We do not
find indications for non-standard oscillation scenarios.
Previous measurements of the flavor composition were

presented by Mena et al. (2014) and Palomares-Ruiz et al.
(2015; based on event sample H1, presented in Aartsen
et al. 2014e), and by Palladino et al. (2015), Pagliaroli et al.
(2015), and Aartsen et al. (2015b; based on event samples that
were extended with respect to H1). With respect to these
measurements, the constraints presented here are significantly
improved; we attribute this to the fact that the combined event
sample analyzed here contains a significant number of shower
events as well as track events. Though the best-fit flavor
composition obtained in Aartsen et al. (2015b) (white “+” in
Figure 8) lies outside the 95% C.L. region, the 68% C.L. region
obtained here is completely contained within that obtained in
the previous work, demonstrating the compatibility of the two
results. Because neither analysis was designed to identify tau
neutrinos, a degeneracy with respect to the ντ-fraction is
observed in both; the slight preference toward a smaller ντ-
contribution found here is likely connected to the slight
differences in the energy distributions of the three neutrino
flavors. In future, the identification of tau neutrinos will enable
us to place stronger constraints on the flavor composition of the
astrophysical neutrino flux.

We acknowledge the support from the following agencies:
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APPENDIX A
TABLE OF INTERACTION TYPES

Table 10 lists the fractions of neutrino interaction types that
contribute to the event samples introduced in Section 2.

Figure 8. Profile likelihood scan of the flavor composition at Earth. Each point
in the triangle corresponds to a ratio : :en n nm t as measured on Earth, the
individual contributions are read off the three sides of the triangle. The best-fit
composition is marked with “×”; 68% and 95% confidence regions are
indicated. The ratios corresponding to three flavor composition scenarios at the
sources of the neutrinos, computed using the oscillation parameters in
Gonzalez-Garcia et al. (2014, inverted hierarchy), are marked by the square
(0:1:0), circle (1:2:0), and triangle (1:0:0), respectively. The best-fit composi-
tion obtained in an earlier IceCube analysis of the flavor composition (Aartsen
et al. 2015b) is marked with a “+.”

60 We have established the compatibility in a separate fit without the
corresponding data set, i.e., without sample H1. The 68% uncertainty interval
for the spectral index obtained in this fit (−2.45 ± 0.10) overlaps with that
obtained in Aartsen et al. (2014e).
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cf. Bustamente et al. PRL 115, 161302 (2015)
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a harder spectral index of −2.3 ± 0.3, but with larger
uncertainties. The result is compatible with the one obtained
here.60

We have tested the hypothesis of isotropy by fitting a model
with two astrophysical components, one in the northern and
one in the southern sky. Compared to the all-sky result, the fit
prefers a harder spectrum E 2.0 0.4

0.3( )( )- -
+

in the northern sky and a
slightly softer spectrum E 2.56 0.12( )- o in the southern sky with a
significance of 1.1σ (p = 13%). The result is not conclusive;
the discrepancy could be caused by a statistical fluctuation or
by an additional component that is present in only one of the
hemispheres (either an unmodeled background component or,
e.g., a component from the inner Galaxy, although a single
point source of the required strength to create the anisotropy
anywhere in that region has already been excluded (Adrián-
Martínez et al. 2014)). Further analysis including R.A.
information will be helpful in testing the hypothesis of isotropy
in the future.

Finally, we performed a measurement of the flavor
composition of the astrophysical neutrino flux. In a first test,
we have measured the electron-neutrino fraction at Earth in a
tribimaximal mixing scenario, with equal νμ and ντ fluxes at
Earth. The best-fit fraction is 0.18 ± 0.11, a value compatible
with the fractions expected from pion-decay sources (0.33) and
muon-damped sources (0.22), but incompatible with that
expected from neutron-beam sources (0.56), see Figure 7. In
a second, more general test, we allow the normalizations of all
three flavor components to vary independently and compare the
result to compositions expected for different astrophysical

scenarios in Figure 8. In agreement with the first test, we find
that pion-decay sources and muon-damped sources are well
compatible with our data, while neutron-beam sources are
disfavored with a significance of 3.6σ (p = 0.014%). We do not
find indications for non-standard oscillation scenarios.
Previous measurements of the flavor composition were

presented by Mena et al. (2014) and Palomares-Ruiz et al.
(2015; based on event sample H1, presented in Aartsen
et al. 2014e), and by Palladino et al. (2015), Pagliaroli et al.
(2015), and Aartsen et al. (2015b; based on event samples that
were extended with respect to H1). With respect to these
measurements, the constraints presented here are significantly
improved; we attribute this to the fact that the combined event
sample analyzed here contains a significant number of shower
events as well as track events. Though the best-fit flavor
composition obtained in Aartsen et al. (2015b) (white “+” in
Figure 8) lies outside the 95% C.L. region, the 68% C.L. region
obtained here is completely contained within that obtained in
the previous work, demonstrating the compatibility of the two
results. Because neither analysis was designed to identify tau
neutrinos, a degeneracy with respect to the ντ-fraction is
observed in both; the slight preference toward a smaller ντ-
contribution found here is likely connected to the slight
differences in the energy distributions of the three neutrino
flavors. In future, the identification of tau neutrinos will enable
us to place stronger constraints on the flavor composition of the
astrophysical neutrino flux.
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individual contributions are read off the three sides of the triangle. The best-fit
composition is marked with “×”; 68% and 95% confidence regions are
indicated. The ratios corresponding to three flavor composition scenarios at the
sources of the neutrinos, computed using the oscillation parameters in
Gonzalez-Garcia et al. (2014, inverted hierarchy), are marked by the square
(0:1:0), circle (1:2:0), and triangle (1:0:0), respectively. The best-fit composi-
tion obtained in an earlier IceCube analysis of the flavor composition (Aartsen
et al. 2015b) is marked with a “+.”

60 We have established the compatibility in a separate fit without the
corresponding data set, i.e., without sample H1. The 68% uncertainty interval
for the spectral index obtained in this fit (−2.45 ± 0.10) overlaps with that
obtained in Aartsen et al. (2014e).
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Neutron decay: rejected at 3.7

cf. Bustamente et al. PRL 115, 161302 (2015)

http://iopscience.iop.org/0004-637X/809/1/98
http://arxiv.org/abs/1506.02645
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a harder spectral index of −2.3 ± 0.3, but with larger
uncertainties. The result is compatible with the one obtained
here.60

We have tested the hypothesis of isotropy by fitting a model
with two astrophysical components, one in the northern and
one in the southern sky. Compared to the all-sky result, the fit
prefers a harder spectrum E 2.0 0.4

0.3( )( )- -
+

in the northern sky and a
slightly softer spectrum E 2.56 0.12( )- o in the southern sky with a
significance of 1.1σ (p = 13%). The result is not conclusive;
the discrepancy could be caused by a statistical fluctuation or
by an additional component that is present in only one of the
hemispheres (either an unmodeled background component or,
e.g., a component from the inner Galaxy, although a single
point source of the required strength to create the anisotropy
anywhere in that region has already been excluded (Adrián-
Martínez et al. 2014)). Further analysis including R.A.
information will be helpful in testing the hypothesis of isotropy
in the future.

Finally, we performed a measurement of the flavor
composition of the astrophysical neutrino flux. In a first test,
we have measured the electron-neutrino fraction at Earth in a
tribimaximal mixing scenario, with equal νμ and ντ fluxes at
Earth. The best-fit fraction is 0.18 ± 0.11, a value compatible
with the fractions expected from pion-decay sources (0.33) and
muon-damped sources (0.22), but incompatible with that
expected from neutron-beam sources (0.56), see Figure 7. In
a second, more general test, we allow the normalizations of all
three flavor components to vary independently and compare the
result to compositions expected for different astrophysical

scenarios in Figure 8. In agreement with the first test, we find
that pion-decay sources and muon-damped sources are well
compatible with our data, while neutron-beam sources are
disfavored with a significance of 3.6σ (p = 0.014%). We do not
find indications for non-standard oscillation scenarios.
Previous measurements of the flavor composition were

presented by Mena et al. (2014) and Palomares-Ruiz et al.
(2015; based on event sample H1, presented in Aartsen
et al. 2014e), and by Palladino et al. (2015), Pagliaroli et al.
(2015), and Aartsen et al. (2015b; based on event samples that
were extended with respect to H1). With respect to these
measurements, the constraints presented here are significantly
improved; we attribute this to the fact that the combined event
sample analyzed here contains a significant number of shower
events as well as track events. Though the best-fit flavor
composition obtained in Aartsen et al. (2015b) (white “+” in
Figure 8) lies outside the 95% C.L. region, the 68% C.L. region
obtained here is completely contained within that obtained in
the previous work, demonstrating the compatibility of the two
results. Because neither analysis was designed to identify tau
neutrinos, a degeneracy with respect to the ντ-fraction is
observed in both; the slight preference toward a smaller ντ-
contribution found here is likely connected to the slight
differences in the energy distributions of the three neutrino
flavors. In future, the identification of tau neutrinos will enable
us to place stronger constraints on the flavor composition of the
astrophysical neutrino flux.
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TABLE OF INTERACTION TYPES
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contribute to the event samples introduced in Section 2.
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in the triangle corresponds to a ratio : :en n nm t as measured on Earth, the
individual contributions are read off the three sides of the triangle. The best-fit
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tion obtained in an earlier IceCube analysis of the flavor composition (Aartsen
et al. 2015b) is marked with a “+.”

60 We have established the compatibility in a separate fit without the
corresponding data set, i.e., without sample H1. The 68% uncertainty interval
for the spectral index obtained in this fit (−2.45 ± 0.10) overlaps with that
obtained in Aartsen et al. (2014e).
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cf. Bustamente et al. PRL 115, 161302 (2015)
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result to compositions expected for different astrophysical

scenarios in Figure 8. In agreement with the first test, we find
that pion-decay sources and muon-damped sources are well
compatible with our data, while neutron-beam sources are
disfavored with a significance of 3.6σ (p = 0.014%). We do not
find indications for non-standard oscillation scenarios.
Previous measurements of the flavor composition were
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(2015; based on event sample H1, presented in Aartsen
et al. 2014e), and by Palladino et al. (2015), Pagliaroli et al.
(2015), and Aartsen et al. (2015b; based on event samples that
were extended with respect to H1). With respect to these
measurements, the constraints presented here are significantly
improved; we attribute this to the fact that the combined event
sample analyzed here contains a significant number of shower
events as well as track events. Though the best-fit flavor
composition obtained in Aartsen et al. (2015b) (white “+” in
Figure 8) lies outside the 95% C.L. region, the 68% C.L. region
obtained here is completely contained within that obtained in
the previous work, demonstrating the compatibility of the two
results. Because neither analysis was designed to identify tau
neutrinos, a degeneracy with respect to the ντ-fraction is
observed in both; the slight preference toward a smaller ντ-
contribution found here is likely connected to the slight
differences in the energy distributions of the three neutrino
flavors. In future, the identification of tau neutrinos will enable
us to place stronger constraints on the flavor composition of the
astrophysical neutrino flux.
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Neutron decay: rejected at 3.7

Pion decay: allowed

Muon-damped pion decay: allowed

cf. Bustamente et al. PRL 115, 161302 (2015)
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IceCube observes an astrophysical neutrino flux 
in multiple channels, but its sources are still unknown. 

The neutrino flavor ratio is consistent with 1:1:1  
Pure neutron decay is excluded, but other scenarios are still 
allowed.  

Astrophysical excess observable down to 10 TeV in the 
southern sky. 

An active muon veto removes atmospheric neutrinos when 
the overburden is small enough.

This is an exciting time for neutrino 
telescopes. Stay tuned for more data!
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Figure 1
Overview of the cosmic ray spectrum. Approximate energies of the breaks in the spectrum commonly
referred to as the knee and the ankle are indicated by arrows. Data are from LEAP (4), Proton (5), AKENO
(6), KASCADE (7), Auger surface detector (SD) (8), Auger hybrid (9), AGASA (10), HiRes-I monocular
(11), and HiRes-II monocular (11). Scaling of LEAP proton-only data to the all-particle spectrum follows
(12).
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Vetoing down-going atmospheric neutrinos 28

Primary cosmic ray

νμ

π-

μ

Atmospheric muons and 
neutrinos are produced in 
the same processes. 

Sufficiently vertical/high-
energy atmospheric 
neutrinos come with 
accompanying muons!

Schönert, Resconi, Schulz, 
Phys. Rev. D, 79:043009

1.5 km of ice

Gaisser, Jero, Karle, van Santen, 
Phys. Rev. D, 90:023009

νe
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Evidence for high-energy astrophysical neutrinos 30

‣Use outer layer of 
PMTs as an active 
veto to select 
neutrino events 

‣36 events with more 
than 6000 PE (~30 
TeV deposited 
energy) observed in 3 
years of data 

‣15 events expected 
from atmospheric 
backgrounds

arXiv:1405.5303 (accepted for PRL)
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atmospheric muon background for the downward-going
region, while a constant threshold value is placed in the
zenith region of cos! & 0:1, where no atmospheric muon
background is expected. The predicted number of signal and
background events passing the final selection criteria are
presented in Table I along with the observed number of
events in the two experimental samples.

The effective neutrino detection areas at final selection
criteria for the different IceCube detector configurations
are shown in Fig. 6. The effective areas are given for each
neutrino flavor, averaged over 4" solid angle for IC79 and
IC86. The areas are averaged over equal fluxes of neutrinos
and antineutrinos. Below 5 PeV, the effective area for
electron neutrinos exceeds that of muon or tau neutrinos.
For particle cascades induced by charged current

interactions of electron neutrinos, their energies are depos-
ited completely inside the detector if their interaction
vertex lies sufficiently inside the instrumented volume.
Contrarily muons (taus) from muon (tau) neutrino inter-
actions only partially deposit their energies in the detector
volume. Therefore, even though tracks have a longer path
in the detector, they satisfy the NPE criteria less frequently
(Fig. 5). At higher energies the effective area for tracks is
larger because they can be generated in an increasingly
larger volume and still reach the detector. Above 100 PeV
cascades contribute less than 20% to the observable events
from cosmogenic neutrino fluxes. The right panel in Fig. 6
shows the effective area summed over all three neutrino
flavors for IC79 and IC86 together with that for IC40
from the previous analysis [9]. The current analysis has
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FIG. 5 (color online). Event number distributions on the plane of NPE and cosine of reconstructed zenith angle (cos!) for the IC79
run (upper panels) and the IC86 run (lower panels). The experimental test samples are shown in left panels. The background
simulations of atmospheric muon (middle-left panels), and the conventional atmospheric neutrino and prompt atmospheric neutrino
[32] (middle-right panels), and simulation of signal cosmogenic neutrino model [6] (right panels) are also shown. The colors indicate
event numbers per live time of 33.4 days and 20.8 days for the IC79 and IC86 test samples, respectively. The signal distributions are the
sum of all three neutrino flavors. The solid lines in each panel indicate the final selection criteria.

TABLE I. Number of events passing cuts at on-line filtering, off-line analysis, and final level with 285.8 days of effective live time
for IC79 and 330.1 days for IC86 (excluding test sample data). One cosmogenic neutrino model [6] (with m ¼ 4 and zmax ¼ 4) is
taken to evaluate the benchmark signal rates. The background rates include atmospheric muons assuming a pure iron primary
composition, conventional atmospheric neutrinos, and prompt atmospheric neutrinos. Analysis sample requests the number of hit
DOMs " 300, log 10 ðNPEÞ " 3:5 for IC79 and IC86, and an additional requirement of rLLH< 8 for IC79. Systematic uncertainties in
the expected event rates at the final selection level are given as asymmetric error intervals after the statistical errors.

Experimental Background MC Benchmark signal MC [6]
Contributions samples IC79 IC86 IC79 IC86 IC79 IC86

EHE filter level 4:0% 107 6:0% 107 4:4% 107 8:9% 107 2.1 2.4

Analysis level 4:5% 105 5:9% 105 8:5% 105 1:3% 106 1.5 1.8

Final level 0 2 0:056& 0:002þ0:028
(0:041 0:026& 0:003þ0:015

(0:017 0:876& 0:004þ0:119
(0:105 1:043& 0:006þ0:142

(0:134

PROBING THE ORIGIN OF COSMIC RAYS WITH . . . PHYSICAL REVIEW D 88, 112008 (2013)

112008-7

Penetrating muons

Phys. Rev. D 88:112008

Atmospheric neutrinos GZK neutrinos

p ` �CMB Ñ � Ñ n ` ⇡` Ñ ⌫µ

CR protons > 50 EeV interact with the CMB, producing neutrinos:

“GZK” neutrinos would be more energetic than any atmospheric 
neutrino or muon → simple selection for largest possible 

acceptance
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search with IceCube, is stable against uncertainties in the
IR/UV backgrounds and the transition model between the
galactic and extragalactic component of the UHECRs
[4,17,60,61]. We should note, however, that the obtained
bound is not valid if the mass composition of UHECRs is
not dominated by proton primaries. The dominance of
proton primaries is widely assumed in the models men-
tioned here while a dominance of heavier nuclei such as
iron provides at least 2–3 times lower neutrino fluxes. The
analysis is not sensitive enough to reach these fluxes yet.

VIII. THE MODEL-INDEPENDENT UPPER LIMIT

The quasidifferential, model-independent 90% C.L.
upper limit on all flavor neutrino fluxes !"eþ"#þ"$

was

evaluated for each energy with a sliding window of one
energy decade. It is shown in Fig. 9 using the same method
as implemented in our previous EHE neutrino searches
[9,11]. An equal flavor ratio of "e:"#:"$ ¼ 1:1:1 is as-
sumed here. A difference from the calculation of the limit
shown in our previous publications arises from the

existence of two events in the final sample. The 90% event
upper limit used in the calculation takes into account the
energy PDFs of each of the observed events using Eq. (3),
where Pn is a function of the neutrino energy E" and
corresponds to the probability of having n events in the
interval [log 10ðE"=GeVÞ % 0:5, log 10ðE"=GeVÞ þ 0:5].
Here, the PDFs for an E%2

" spectrum are used since
the two observed events are not consistent with a harder
spectrum such as from cosmogenic neutrino models. The
quasidifferential limit takes into account all the systematic
uncertainties described in Sec. V. The effect of the uncer-
tainty due to the angular shift of the cascade events on the
upper limit is negligible above 10 PeV (< 1%) as track
events dominate in this energy range. Below 10 PeV, the
effect weakens the upper limit by 17% because cascade
events dominate. Other systematic uncertainties are imple-
mented as in previous EHE neutrino searches [9,11]. The
obtained upper limit is the strongest constraint in the EeV
regime so far. In the PeV region, the constraint is weaker
due to the detection of the two events. An upper limit for an
E%2 spectrum that takes into account the two observed
events was also derived and amounts to E2!"eþ"#þ"$

¼
2:5& 10%8 GeV cm%2 s%1 sr%1 for an energy range of
1.6 PeV–3.5 EeV (90% event coverage).

IX. SUMMARY

We analyzed the 2010–2012 data samples collected by
the 79- and 86-string IceCube detector searching for ex-
tremely high energy neutrinos with energies exceeding
1 PeV. We observed two neutrino-induced cascade events
passing the final selection criteria. The energy profiles of
the two events indicate that these events are cascades with
deposited energies of about 1 PeV. The cosmogenic neu-
trino production is unlikely to be responsible for these
events. An upper limit on the neutrino rate in the energy
region above 100 PeV places constraints on the redshift
distribution of UHECR sources. For the first time the ob-
servational constraints reach the flux region predicted for
some UHECR source class candidates. The obtained upper
limit is significantly stronger compared to our previous
publication [9] because of the enlarged instrumented vol-
ume and the refined Monte Carlo simulations. Future data
obtained with the completed detector will further enhance
IceCube’s sensitivity to cosmogenic neutrino models.
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Results: angular distribution 33

IceCube preliminary

Dominated by conventional 
atmospheric neutrinos → peaked 

at the horizon
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neutrinos → isotropic (but some 
up-going neutrinos are absorbed 
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Zenith distributions at IceCube 34
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Early hints of a high-energy excess 35
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(submitted to Phys.Rev.D)
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Constraints on neutrinos from GRBs 36
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Sub-threshold GRBs can’t explain the diffuse flux 37
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Model-independent GRB constraints 38
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Constraints on fluxes from individual sources 39
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Relationship to extragalactic diffuse gamma rays 40
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Murase, Ahlers, Lacki 
Phys.Rev.D 88 (2013) 121301

Interpret with care: 
Fermi data points are 

extra-galactic only
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Relationship to extragalactic diffuse gamma rays 40
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Interpret with care: 
Fermi data points are 

extra-galactic only

2-year > 1 TeV starting events (slide 21)

3-year > 60 TeV starting 
events (IceCube 2014 PRL)
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Correlations with astrophysical index 41
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Energy spectrum with charm upper limit 42
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τ double-bang reconstruction 43
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No τ events observed to date.

J. Inst. 9:P03009 (2014)
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Cascade reconstruction: hypothesis and data 44

IceCube preliminary
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Cascade reconstruction: likelihood fit 45
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Cascade reconstruction: likelihood fit 45
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Cascade reconstruction: energy 46

J. Inst 9 (2014) P03009



Cascades 47

~ 13 TeV deposited~ 20 TeV deposited



Starting tracks 48

~ 18 TeV deposited ~ 100 TeV deposited
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Deposited-energy resolution for showers in IceCube49

J. Inst 9 (2014) P03009
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