Status of Direct Dark Matter Search

Bruno Serfass – UC Berkeley

TeVPA Oct 26-30, 2015

Hidden Sector Particles

	ALPs		Axions		Sterile v's			WIMPs			
feV peV neV μeV meV eV keV MeV GeV TeV PeV Dark Matter Mass											
10 ⁻⁴¹	10-35	10-29	10 ⁻²³ Ma	10 ⁻¹⁷ x Electro	10 ⁻¹¹ on Recoil	10 ⁻⁵ Energy [10 ⁰ [eV]	101	101	10 ¹	
10 ²⁶	10 ²³	10 ²⁰	10 ¹⁷ Dark	10 ¹⁴ Matter P	10 ¹¹ Particle De	10 ⁸ ensity pe	10 ⁵ r Liter	10 ²	10 ⁻¹	10-4	

Hidden Sector Particles

	ALPs		Axions		Sterile v's			WIMPs		
feV	peV	neV	μeV	meV Darl	eV Matter I	keV Mass	MeV	GeV	TeV	PeV
10 ⁻⁴¹	10 ⁻³⁵	10-29	10 ⁻²³ Ma	10 ⁻¹⁷ x Electro	10 ⁻¹¹ n Recoil	10 ⁻⁵ Energy [10 ⁰ eV]	10 ¹	10 ¹	10 ¹
10 ²⁶	10 ²⁶ 10 ²³ 10 ²⁰ 10 ¹⁷ 10 ¹⁴ 10 ¹¹ 10 ⁸ 10 ⁵ Dark Matter Particle Density per Liter						10 ⁵ r Liter	10 ²	10 ⁻¹	10 ⁻⁴
Coherent/Resonant Detection				onant		Electron Nuclea Recoils Recoils			-	

If WIMPs are the halo, detect them via elastic scattering on target nuclei (nuclear recoils)

• Energy spectrum and rate depend on the target nucleus mass and WIMP distribution in Dark Matter Halo

Total Rate for different thresholds, $m\chi = 100 \text{ GeV}/c^2$, $\sigma = 1.\times 10^{-45} \text{ cm}^2$ R(Ethresh) [counts/10kg/year] Xe Ge 1.00 Ar 0.50 Si 0.10 Ne 0.05 Ethresh [keV] 40 10 20 30 n

If WIMPs are the halo, detect them via elastic scattering on target nuclei (nuclear recoils)

• Energy spectrum and rate depend on the target nucleus mass and WIMP distribution in Dark Matter Halo

If WIMPs are the halo, detect them via elastic scattering on target nuclei (nuclear recoils)

• Energy spectrum and rate depend on the target nucleus mass and WIMP distribution in Dark Matter Halo

If WIMPs are the halo, detect them via elastic scattering on target nuclei (nuclear recoils)

• Energy spectrum and rate depend on the target nucleus mass and WIMP distribution in Dark Matter Halo

Total Rate for different thresholds, $m\chi = 10 \text{ GeV}/c^2$, $\sigma = 1. \times 10^{-45} \text{ cm}^2$ R(Ethresh) [counts/10kg/year] Xe Low Energy Threshold Low Background Rate, Discrimination Signal/Background Large Exposure (Mass x Time) 0.05 40 Ethresh [keV] 10 20 30 0

Goal: find a very small WIMP signal in presence of many other background particles interacting in detectors

Nuclear/Electron Recoils (NR / ER):

Amount of charge or light created after an event depends on the type of interaction = "Quenching factor" (Q)

Worldwide DM Search

Many experiments around the world. Deep underground to avoid cosmic rays

Sensitivity for a ~50 GeV WIMP:

Current Generation:
σ_{SI}~ 10⁻⁴⁵cm²

Next step ~1 ton Exp. (under construction / development):

 σ_{SI} ~ 10^{-46}, few x10^{-47} cm^2

Plans for multi-ton Exp.
 (>5 years)
 σ_{sl} ~ few x10⁻⁴⁸ cm²

End of the road? Not so far away from being limited by backgrounds from low energy solar neutrinos

Current Landscape

Current Landscape

WIMP Mass [GeV/c²]

Current Landscape

Noble Liquid Detectors (Xe, Ar, Ne)

Nuclear/electron recoil discrimination methods:

- Ionization and direct excitation ratio
- Pulse shape discrimination: Singlet/triplet ratio NR:ER = 10:1

Time constants (singlet/triplet): Xe: 3ns/27ns, Ar 10/1500ns

Implementation:

- Single phase: measure scintillation only
- Double phase: measure also ionisation through electroluminescense

Bottom PMT Array

Noble Liquid: Two-Phase

• XENON-100 (Gran Sasso)

New Results further excluding DAMA

Search for DM interacting with electrons

Exclude the DAMA signal as being induced by WIMPs interacting with e- according to

AV Coupling at 4.4 σ, Mirror DM at 3.6 σ, Luminous DM excluded at 4.6 σ
 Talk by F. Gao

Modulation

Assuming AV coupling of WIMP to e-, DAMA annual modulation is excluded at 4.8 σ

• XENON-1T (Gran Sasso) Talk by D. Coderre Building/Commissionning well underway, start science end of 2015, 2 t*y => σ =1.2·10⁻⁴⁷cm² @ 50 GeV

Noble Liquid: Two-Phase

LUX 300 kg Xe (Sanford)

Reanalysis 2013 data (« a few weeks away »)

- new calibrations, better fiducialization
- Lower threshold, sensitive down to 3.3 GeV
- 10% more exposure

LUX ZEPLIN – "LZ"

8 tons LXe, reuse LUX water tank, installation

start 2016

Noble Liquid: Two-Phase

PandaX-I (Jin Ping) arXiv:1505.00771v1 10⁻⁴⁰ LXe TPC, 54 kg fid, 80 days : s section (cm²), -40 cm⁴ - 5keV NR threshold probing M_{WIMPS}<10GeV - 7 events ~ expected background 10⁻⁴² Cross (andaX-I 2015 10⁻⁴³ XENON100, 2012 WIMP-nucleon Talk by X. Chen UX 2013. 10-44 PandaX-II (Jin Ping) 10-45 Same vessel/infrastructure, 300 kg fiducial

10⁴⁰ (u) 10⁴¹ (u) 10⁴¹ (u) 10⁴¹ (u) 10⁴¹ (u) 10⁴⁴ (u) 10⁴⁴ (u) 2013 SuperCDMS 2014 DarkSide50 CRESST-II new CDEX 2014 COGeNT 2014 COMS-II SI DAMA 3 sigma CRESST-II 0⁴⁶ (u) 4 5 6 7 8 9 10 WIMP mass (GeV/c) (GeV/c)

• DarkSide 50 (Gran Sasso)

Science start in 2015

 Results with AAr ~ CDMS for M_{WIMPS}=100 GeV
 DM search with underground LAr started in April 2015. First Result with 70 days soon

Talk by M. Wada

Noble Liquid: Single-Phase

• XMASS-I (Kamioka)

- 2013 refurbishement: 10x lower bg
- Annual modulation analysis: No significant mod. limit consistent with previous Xe results
- Adding 2nd year data

Talk by H. Ogawa

- XMASS-I.5: 1 ton FV in 2016
- XMASS-II: 10 ton FV

Cryogenic Crystals Detectors

- Amplification of ionisation
- Readout via phonons
- Loss of ER/NR discrimination

Cryogenic Crystals Detectors

or

Ionization (CDMS, Edelweiss)

<u>Light</u>

(CRESST)

2 modes:

- Small voltage (<8V)
- High Voltage (~100V)
 - Amplification of ionization
 - Readout via phonons
 - Loss of ER/NR discrimination

• CRESST-II (Gran Sasso)

Scintillating CaWO4 300g crystals as target

- Newest Result (2015)
 - 307 eV energy threshold
 - Probes sub-GeV/c² WIMP mass!

CRESST-III

Phase 1 (start end 2015): 50 kg-days 1 year of running with 10 small modules

- Prototype successfully tested
- Production of modules ongoing

Talk by R. Strauss

• CRESST-II (Gran Sasso)

Scintillating CaWO4 300g crystals as target

- Newest Result (2015)
 - 307 eV energy threshold
 - Probes sub-GeV/c² WIMP mass!

CRESST-III

Phase 1 (start end 2015): 50 kg-days 1 year of running with 10 small modules

- Prototype successfully tested
- Production of modules ongoing

Talk by R. Strauss

SuperCDMS (Soudan)

- I5 Ge detectors (total ~9kg) in operation until recently
- 8 phonon + 4 charge channels, interleaved
- Operate single detector ("CDMSLite") at high bias (~70 V)

Newest CDMSLite Result (2015)

- 70.1 kg-d exposure
- 56/75 eV ionization Trigger Thresholds

SuperCDMS-SNOLAB

Planning underway to build at SNOLAB

Goals: Low mass WIMPs

- Mixture of Ge & Si targets, larger crystals than SuperCDMS Soudan
- Mixture of iZIPs and HV detectors

• EDELWEISS-III (Modane)

- 8 months physics data 2014/2015 with 24 Ge Full InterDigit ("FID800") detectors
- Current run resumed in June 2015 with 23 FID800 (12 new) + 1 FID200 for "High-Voltage" R&D
 - Newest Result (2015)
 - 8 detectors with good baseline resolution
 - 4x FID800 @ 1.0 keVee, 4x FID800 @ 1.5 keVee

Talk by E. Armengaud

Nal Detectors

DAMA/LIBRA Time Dependence of Residual Singles Rate in 2-4 keVee bin

Checking DAMA/LIBRA Modulation

Northern Hemisphere	Gran Sasso DAMA/LIBRA 250 kg running	Boulby DM-Ice North 37 kg R&D 250 kg planned	Canfranc ANAIS 37 kg R&D 250 kg planned	Y2L KIMS 45 kg R&D 200 kg planned	Gran Sasso SABRE R&D	Kamioka PICO-LON KamLAND- PICO R&D	
Southern Hemisphere		South Pole DM-Ice 17 kg running 250 kg planned			Stawell SABRE Lab completion 2017	rock	

Ultra-pure crystal development underway by DM-Ice, KIMS, ANAIS, SABRE, and PICO-LON collaborations

WIMP Search: Perspective

Summary/Outlook

> No firm evidence of WIMP signal yet:

• DAMA/LIBRA modulation still a mystery: excluded by LUX, XENON100, SuperCDMS, and EDELWEISS

• Need to repeat experiment (DM-ICE, ANAIS, etc.),

Next Generation WIMP search experiments under development/construction, covering a lot of new parameter space

Given the wealth of theoretical possibilities, multiple detectors /techniques will be required to build a robust case

Extra Slides

Searching for Axions

- Light pseudoscalar particle
 - introduced to solve strong CP problem (Peccei-Quinn)
 - weak couplings
 - born non-relativistic (cold dark matter)
- Detection rely on induced coupling to photons
- Techniques:
 - ADMX: high-Q resonance cavity in an external B field
 - CAST: conversion of solar axions to photons in magnetic field (using LHC prototype magnet B~10T)

IAXO proposal: search for meV mass axion

G2 ADMS Search Capability

Noble Liquid: Single-Phase

• DEAP-3600 (SNOLAB)

- 3600 kg LAr , 1000 kg fid
- Goal in 3t.y *σ*=2·10-46cm2 @ 100 GeV
- Commissioning with argon gas followed by cooldown/liquid argon fill by end of year

