Particle acceleration observed in gamma rays

Based on Buehler & Blandford RPPh 77 2014 Kagan et al. SSRv 1 2015 Sironi et al. SSRv 1 2015

Rolf Bühler • 27th October 2015 • TeVPa Kashiwanoha

>50 GeV

Cosmic accelerators

Cosmic accelerators

Universe of plasma bubbles

Contact of plasma flows leads to non-thermal particle acceleration, magnetic and bulk flow energies are transferred to particles

Universe of plasma bubbles

The most studied acceleration mechanisms are shock acceleration and magnetic reconnection

Shock acceleration

Theoretically studies since the 70's, recently with 2D/3D Particle In Cell simulations

Shock acceleration

The acceleration depends on the shock Lorentz factor and the upstream magnetization

$$\sigma = \frac{B^2}{4\pi \cdot (\gamma - 1) n mc^2}$$

(in the shock frame)

For magnetized relativistic shocks ($\sigma > 10^{-3}$ and $\gamma > 1$) there is no acceleration if

 $\theta > 34 \circ / \gamma$

(in the upstream frame)

as particles can not come back upstream

Magnetic reconnection

Particles are accelerated predominantly at X-points and concentrated into magnetic islands

Magnetic reconnection

Particles are accelerated predominantly at X-points and concentrated into magnetic islands

Magnetic reconnection

Large magnetization ($\sigma > 1$) are required. Hard spectra ($s_{\gamma} < 2$) are possible. Highest energy particles are beamed into z-direction

Accelerator property estimates

	Supernova Remnant shock	Active Galactic Nuclei jet	Pulsar Wind reverse shock
γ-1	10 ⁻⁶ - 10 ⁻³	~10	$10^4 - 10^6$
σ	<10 ⁻³	>10 ⁻³	0.01 - >1
Reconnection	no	(yes)	yes
Shock	yes	(no)	no

Radio VLA Optical HST X-rays Chandra

10'' ≈ 0.3 ly

The gamma-ray flares

Flares from reconnection?

Summary

At the contact point of plasma flows, shock acceleration and magnetic reconnection can accelerate non-thermal particles

Shock acceleration is inefficient at magnetized relativistic shocks. Magnetic reconnection appears more natural in relativistic flows (as AGN, PWN or GRBs)

The Crab nebula flare properties can be well explained as explosive reconnection events in Particle In Cell simulations

