New physics searches at the LHC Where do we go with run II ?

Osamu Jinnouchi (Tokyo Institute of Technology)

On behalf of the ATLAS and CMS collaborations

2015. 10. 26 TeVPA Conference 2015

Introduction

- With the discovery of Higgs boson in 2012, the Standard Model has been completed
- However there are some short comings in the SM
 - hierarchy problem (Higgs mass divergence)
 - matter vs. anti-matter asymmetry
 - unification of the force
 - etc.
- Among all, the origin of the Dark Matter (DM) is one of the biggest mysteries
- In collider experiment, searches for weakly interacting particles (WIMP DM) use large imbalance of p_T (or E_T), assuming they escape detection
- Hence Missing energy measurement is the key

N.B. there are other DM models which predict exotic signatures (e.g. displaced vertices)

Detectors: ATLAS and CMS

ATLAS (A Toroidal LHC ApparatuS)

CMS (Compact Muon Solenoid)

ATLAS and CMS are general-purpose detectors with

- excellent tracking in the central region
- good calorimeter granularity with large coverage ($|\eta|\!\leq\!5.0$ ~0.8°)

make them good for missing transverse momentum measurements

LHC Run-1

Successful operations in both LHC and Experiments

- LHC was in good condition during Run-1 (2010-2012)
- ATLAS and CMS collected good fraction of data (>95%) throughout Run-1
- 8 (7) TeV proton-proton collisions
 ~20 (5) fb⁻¹ good data for physics

General strategy for the new physics

- Define the event selection based on signal and bkg characteristics (e.g. kinematics)
- Compare the data to bkg (MC or by data driven)
 - new physics would produce deviation from bkg prediction
 - If consistent \rightarrow set the limits, typically on the cross-section x BR
- Then comparisons made for specific models

PART 1 Complete SUSY models

SUSY overview for RUN1

- Searches based on R-parity conservation + neutral lightest SUSY particle
 → look for large Missing E_T final state
 Productions
 - Gluinos/Squarks strong productions
 - Stop/sbottom productions
 - Direct electro-weak productions

(searches for R-parity violating and long lived signatures are not covered in this talk. But I will briefly show the "disappearing track in the detector volume" search which is relevant for the pMSSM interpretation later on)

- Searches optimized and interpreted with simplified SUSY models (single production & decay mode)
- Results are also interpreted with more sophisticated models (mSUGRA, NUHM, GGM, ...) In this talk → pMSSM (19 parameters) consideration with DM relic density

/

Strong production (0/1/2 leptons + multi jets + E_T^{miss})

- Dominant process at LHC, if squarks/gluinos are not too heavy
- typical signature : high-pT multi-(b) jets, 0-1-2 leptons, EtMiss from LSP

squark/gluino production with neutralino LSP

squark/gluino production with gravitino LSP

ATLAS searches

0-leptons + 2-6 jets + EtMiss 0-leptons + 7-10 jets + EtMiss 1-leptons + jets + EtMiss 2-leptons + 2-6 jets + EtMiss 2-leptons SS/3L+jets+EtMiss 1-2 taus + jets + EtMiss photons + jets + EtMiss P Summary paper

JHEP 09 (2014), 176 JHEP 10 (2013), 130 JHEP 04 (2015), 116 EPJC 75 (2015), 318 JHEP 06 (2014), 035 JHEP 09 (2014),103 PRD 92 (2015) 072001 arXiv: 1507.05525

CMS searches

 3-5,6-7,>=8 jets + EtMiss
 JHEP 06 (2014) 055

 multi-jets+b-jets+ EtMiss
 PLB 725 (2013) 243

 1-leptons+jets+bjets+EtMiss
 PLB 733 (2014) 328

 2-leptos SS+bjets+EtMiss
 JHEP 01 (2014),163

 multi-jets with MT2 variable
 JHEP 05 (2015), 078

numerous analyses for different phase spaces

LHC/ATLAS/CMS

Strong production (0 leptons $+ \ge 2-6$ jets $+ E_T^{miss}$)

[arXiv:1405.7875] JHEP09(2014)176

L dt = 20.3 fb⁻¹, \s=8TeV

10⁵

10⁴

ATLAS

LHC/ATLAS/CMS

Data 2012

SM Total

Multiiets W+jets

Diboson

Hint for the Run2 ? (3σ excess)

- ATLAS search for the jets + E_T^{miss} + Z signature
 - At least 2 jets (P_T>35GeV)
 - $H_T > 600 \text{ GeV}$ (high jet activity) $H_T = \sum p_T(jets) + p_T(leptons)$
 - $E_T^{miss} > 225$ GeV then select SFOS lepton pair (ee, $\mu\mu$)
 - $M(II) = Mz \pm 10 \text{ GeV}$
- Main Bkg: 'flavour symmetric', estimated from eµ data)

q

q

p

3rd gen. squark production

- Searches for gluino mediated or direct stop/sbottom productions
- Natural (non-fine tuning) SUSY requires light stop/sbottom

Electro-weak production

- If squarks/gluinos are all heavy, EW SUSY productions dominate
- Multi-lepton signatures with low hadronic activity
 - 2-leptons + EtMiss, 3-leptons + EtMiss, ≥ 4-leptons + EtMiss,
 ≥ 2-taus + EtMiss, 1-lepton+2 b-jets+EtMiss, etc

12

Long–lived $\tilde{\chi}_1^{\pm}$ search

Long lived chargino $\rightarrow \pi$ + neutralino

- Backgrounds
 - hadrons interacting with material in ID
 - Leptons fails id criteria
 - p_T mis-measured track
- ATLAS/CMS
 - Similar approach with different inner detector configuration

ATLAS: Phys. Rev. D 88, 112006 (2013) ATLAS Charginos mass <270 GeV is excluded (95% CL) CMS: (JHEP01 (2015) 096)) CMS has excluded up to 260GeV (95% CL)

constraints on chargino lifetime vs. mass is also obtained

TRT

Pixel

SCT

LHC/ATLAS/CMS $\tilde{\chi}_{1}^{\pm}$ decaying into $\tilde{\chi}_{1}^{0} + \pi^{\pm}$ Badly mismeasured in p_{T} due to a wrong combination of space-points High- p_{T} charged hadron interacting with ID material

teel E O

Lepton failing to satisfy

identification criteria due to large bremsstrahlung or scattering

> reconstructed track true particle track

13

pMSSM interpretation (ATLAS)

ATLAS arXiv:1508.06608 (accepted by JHEP)

- Evaluate the general pMSSM (19 parameters) limit from 22 Run1 searches
 - R-parity conserving
 - neutralino LSP
- Random sampling of the parameters 500 million model points (up to 4 TeV)
- Apply constraints from
 - Precision EW and flavor
 - DM abundance
 - LEP, Tevatron
 - Higgs mass

 \rightarrow 310,327 models (Before Run-1)

- Generate/reconstructed 44,559 models 600 million simulated signal events
- Use 22 search results (200 signal regions), present in 2D the fraction of models excluded

Similar extensive analyses by CMS (SUS15010)

Inclusive	$\begin{array}{l} 0 \text{-lepton} + 26 \text{ jets} + E_{\mathrm{T}}^{\mathrm{miss}} \\ 0 \text{-lepton} + 710 \text{ jets} + E_{\mathrm{T}}^{\mathrm{miss}} \\ 1 \text{-lepton} + \text{jets} + E_{\mathrm{T}}^{\mathrm{miss}} \\ \tau(\tau/\ell) + \text{jets} + E_{\mathrm{T}}^{\mathrm{miss}} \\ \mathrm{SS/3}\text{-leptons} + \text{jets} + E_{\mathrm{T}}^{\mathrm{miss}} \\ 0/1\text{-lepton} + 3b\text{-jets} + E_{\mathrm{T}}^{\mathrm{miss}} \\ \mathrm{Monojet} \end{array}$
3 rd Gen	0-lepton stop 1-lepton stop 2-leptons stop Monojet stop Stop with Z boson $2b$ -jets + E_{T}^{miss} tb + E_{T}^{miss} , stop
EW	ℓh 2-leptons 2- τ 3-leptons 4-leptons Disappearing Track Long-lived particles $H/A \rightarrow \tau^+ \tau^-$

pMSSM interpretation (ATLAS)

- Black : 100% excluded
- White : no model points excluded at pre-selection
- White line : 95% CL limit from a simplified model for comparison (not much different!)
- Compressed gluino-neutralino models are excluded up to 600GeV by mono-jet search
- Sensitivity for wino-like LSP model from disappearing track search ($\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi$)

arXiv:1508.06608

Other scenarios are in the back up slides

Impact of ATLAS Run1 searches on SUSY DM

Bino LSP models:

arXiv:1508.06608

- 2/3 are excluded, sensitivity up to $m(\tilde{\chi}_1^0) \sim 800 \text{GeV}$
- Wino LSP models:
 - Sensitivity up to 800GeV, especially below 200GeV (80% excluded)
 - Constraints from disappearing track analysis
- Higgsino LSP models:
 - Charged higgsino lifetime too short, not much constrained

PART 2 Effective Field Theories and Simplified Models

Mono-X searches

• Effective Field Theory (EFT) approach

Cross section depends on:		
$M_* = m_V / \sqrt{g_f g_\gamma}$ Suppression mass		
m _v : mediator mass		
g _f g _χ : coupling strength		

- Search for particle X (= γ , jet, Z/W, etc) recoiling against DM (=Missing E_T)
- Result interpretation:
 - Cross section
 - Effective operators

Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5 q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
$\mathbf{D7}$	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Phys.Rev.D82:116010,2010

- $E_T^{miss} > 140 \text{ GeV}$
- $p_T > 145$ GeV (central) accept up to 1jet
- Bkg estimation with simulation corrected for data/MC differences

630 events for 614 ± 63 expected

CMS, arXiv:1410.8812

Mono-Jet search

- p_T^{jet}>125 GeV (central)
- $p_T^{jet}/E_T^{miss} > 0.5$
- at least 1jet, lepton and isolated track vetoes
- Bkg estimation in CRs, Cross check in VRs
- E_T^{miss} : SR1 (>150GeV)- SR9 (>700GeV)
- Similar analysis from CMS (Eur. Phys. J. C75 (2015) 235)

ATLAS: Eur. Phys. J. C75 (2015) 299

Comparison plots

- Comparison with other experiments
- Complementary with direct searches, esp. LHC has sensitivities for low DM mass
- LHC mono-X searches also have similar sensitivity for spin-dependent operators, where direct searches are weaker (backup slide)

Mono–W or Z searches

- Search for DM signature with gauge boson
- Lower background, complementary to mono-jet search
- Both hadronic, leptonic decays covered (hadronic channel has stronger sensitivity)

- a large radius jet (pT>250GeV)
- mjet = [50, 120] GeV
- lepton, photon vetoes
- Data driven background estimation

Searches with Simplified Models

- Less simple and versatile as it is more model-dependent However it overcomes the problems of EFT (validity, comparisons with the direct detection experiments)
- Additional parameters are needed (e.g. mediator mass, couplings...)
- ATLAS+CMS(+theorists) Dark Matter Forum created Run-2 benchmark implementations based on Run-1 experience (Dark Matter Forum report: *Phys.Dark Univ.9-10(2015)8-23*)
- already in use by ATLAS and CMS during Run-1

Other DM searches + mini-summary

- There are other searches based on rich phenomenology (interpreted by simplified models)
 - DM + heavy flavours : enhanced coupling [with top] ATLAS: EPJC 75(2015) 92, JHEP06(2015)121, CMS: CMS-B2G-13-004 [with bottom] ATLAS: EPJC 75(2015) 92
 - DM + Higgs

[Higgs $\rightarrow \gamma\gamma$] ATLAS: PRL 115(2015) 131801 NEW \rightarrow [Higgs \rightarrow bb] ATLAS: arXiv:1510.06218 (submitted to PRD)

- Higgs portal model : [invisible decays] ATLAS: arXiv:1508.07869, arXiv:1509.00672 CMS: CMS-HIG-14-038
- Broad variety of mono-X searches carried out, so far consistent with SM
- Large range of parameter space was scanned, complementary to direct and indirect DM search experiments

PART 3 Beginning of new era: LHC RUN-2

LHC Run2 (2015~2018) started

- Center of mass energy becomes 13TeV (about twice)
- Data taking since June 2015, already used for physics
- Run2 this year ~ a few fb⁻¹ by the end of Run2 ~ 100fb⁻¹

High-mass events

5.4. TeV di-jet

We are at the Experimental Energy Frontier

eriment at the LHC, CERN rded: 2015-Aug-22 02:13:48.861952 GMT nt / LS: 254833 / 1268846022 / 846

3.0 TeV di-electron

13 TeV analysis in ATLAS

- First control region plots for measurements and searches already available
- Run-1 limits on black hole production has already been surpassed by Run-2 data set (80pb⁻¹ ATLAS-CONF-2015-043, ATLAS-CONF-2015-045)
- whole list of analyses (SUSY, Exotics) found here https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults 0-lepton 2-6 jets + MET EXPERIMENT Di-jet mass search W+jets control region Events Events / 100 GeV Data 2015 (\s = 13 TeV) ATLAS Preliminary **ATLAS** Preliminary SM Total $L = 78 \text{ pb}^{-1}$ N+jets √s=13 TeV, 80 pb⁻¹ 10 Ton 🗕 Data Background fit Z+iets BumpHunter interval Diboson 10² BlackMax, m = 4.0 TeV BlackMax. m = 5.0 TeV CRW selection 10^{2} 10╞ 10 E p-value = 0.79 1는 Fit Range: 1.1 - 5.3 TeV $|y^*| < 0.6$ Data / MC 2.5 Signif. 1.5 0.5 1000 500 1500 2000 2500 5 ATLAS-CONF-2015-042 m_{off}(incl.) [GeV] ATL-PHYS-PUB-2015-028 m_{ii} [TeV]

13 TeV analysis in CMS

- Preliminary control region plots based on 42pb⁻¹ data
- whole list of analyses (SUSY, Exotics) found here

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Run-2 expectations for DM searches

 Run-1 sensitivity will be surpassed by the first 5 fb⁻¹ of Run-2 data

'I AS

30

• From Run1

- DM Searches from both directions i.e.
 - Complete models (SUSY)
 - Effective Field Theory and Simplified Models
- no evidences were found (except for some hints)
- strong limits made in the parameter space
- For Run2 and beyond
 - Higher energy regime ($\sqrt{s} = 13$ TeV): expected much higher sensitivities for large scale physics
 - Many new schemes, new implementations, even new detector (!) installed : smooth start of the Run-2 owing to the accumulations of knowledge, experiences during Run-1

New surprise can happen anytime - stay tuned

EXTRA SLIDES

spin-dependent interaction limit

ATLAS mono-jet search

