The Extragalactic Radio Background from Dark Matter Annihilation and the ARCADE-2 Excess

Ke Fang
JSI Fellow
University of Maryland & NASA GSFC
TeVPA – Oct 27, 2015

KF & Linden PRD.91.083501, 1412.7545
KF & Linden submitted to PRD, 1506.05807
The ARCADE-2 Excess

Excess Antenna Temp (K)

22 MHz - 10 GHz
The ARCADE-2 Excess

$T_{\text{arcade}} = 1.26 \left(\frac{\nu}{\text{GHz}} \right)^{-2.6}$ K

22 MHz - 10 GHz
The ARCADE-2 Excess

$T_{\text{arcade}} = 1.26 \left(\frac{\nu}{\text{GHz}} \right)^{-2.6} \text{ K}$

$T_{\text{sources}} = 0.23 \left(\frac{\nu}{\text{GHz}} \right)^{-2.7} \text{ K}$

22 MHz - 10 GHz
The ARCADE-2 Excess

22 MHz - 10 GHz

$T_{\text{arcade}} = 1.26 \left(\frac{\nu}{\text{GHz}} \right)^{-2.6} \text{K}$

$T_{\text{sources}} = 0.23 \left(\frac{\nu}{\text{GHz}} \right)^{-2.7} \text{K}$

Exceeds the isotropic galactic diffuse emission & flux of extragalactic radio sources
Dark matter YES
Dark matter annihilation \rightarrow
electrons \rightarrow diffusive
synchrotron emission

Fornengo et al, PRL, 107 (2011) 271302
Hooper et al, PRD, 86.103003, 2012
Dark matter YES
Dark matter annihilation \rightarrow
electrons \rightarrow diffusive
synchrotron emission

Dark matter NO
Unusual smoothness of the
unresolved radio background \rightarrow
unlikely from large-scale structure

Fornengo et al, PRL, 107 (2011) 271302
Hooper et al, PRD, 86.103003, 2012

Anisotropy Constraints

- Planck
 857 GHz

\[\frac{L(L+1)C_L}{2\pi^2} \frac{1}{T^2} \]

\[\Delta T/T \]

- VLA 4.9 GHz
- VLA 8.4 GHz
- ATCA 8.7 GHz

- \(z=[0,1] \)
- \(z=[0,2] \)
- \(z=[5,10] \)

- 1 Mpc/h
- 2 Mpc/h

1 Mpc/h
2 Mpc/h
Anisotropy Constraints

\[\frac{L(L+1)C_L}{2\pi^2} (\frac{\Delta T}{T}) \]

mass power spectrum

Planck
857 GHz

\(z = [0, 1] \)
\(z = [0, 2] \)
\(z = [5, 10] \)

VLA 4.9 GHz

VLA 8.4 GHz

ATCA 8.7 GHz

1 Mpc/h
2 Mpc/h

Anisotropy Constraints

\[C_\ell \propto \left(\frac{\delta T}{T_{\text{excess}}} \right)^2 = \left(\frac{\delta T}{T_{\text{CMB}}} \frac{T_{\text{CMB}}}{T_{\text{excess}}} \right)^2 \]
Anisotropy Constraints

\[C_\ell \propto \left(\frac{\delta T}{T_{\text{excess}}} \right)^2 = \left(\frac{\delta T}{T_{\text{CMP}}/T_{\text{excess}}} \right)^2 \]

Mass power spectrum

VLA 4.9 GHz

VLA 8.4 GHz

ATCA 8.7 GHz

Planck

857 GHz

[\text{CMB observation}]
Anisotropy Constraints

$C_\ell \propto \left(\frac{\delta T}{T_{\text{excess}}} \right)^2 = \left(\frac{\delta T}{T_{\text{CMB}}} \cdot \frac{T_{\text{CMB}}}{T_{\text{excess}}} \right)^2$

mass power spectrum

uncertainties in excess temperature above 5 GHz -> requires a consistent computation of intensity & anisotropy
Intensity of the Extragalactic DM signals

\[I(E_s) = \int d\chi \delta^2(z) W[(1 + z)E_s, \chi] \]
Intensity of the Extragalactic DM signals

\[I(E_s) = \int d\chi \delta^2(z) W[(1 + z)E_s, \chi] \propto \langle \sigma v \rangle \frac{dN}{dE_s} \]

average flux from DM annihilation
Intensity of the Extragalactic DM signals

\[I(E_s) = \int d\chi \delta^2(z) W[(1 + z)E_s, \chi] \]

\[\propto \langle \sigma v \rangle \frac{dN}{dE_s} \]

average flux from DM annihilation

Average overdensity

\[\propto \int dM \frac{dn(M, z)}{dM} \int dV \rho_{\text{DM}}(r, M, z)^2 \]
Intensity of the Extragalactic DM signals

\[I(E_s) = \int d\chi \delta^2(z) W[(1 + z)E_s, \chi] \]

average flux from DM annihilation

Average overdensity

\[\propto \int dM \frac{dn(M, z)}{dM} \int dV \rho_{DM}(r, M, z)^2 \]
Intensity of the Extragalactic DM signals

\[I(E_s) = \int d\chi \delta^2(z) W((1 + z)E_s, \chi) \]

\[\propto \langle \sigma v \rangle \frac{dN}{dE_s} \]

Average flux from DM annihilation

Average overdensity

\[\propto \int dM \frac{dn(M, z)}{dM} \int dV \rho_{DM}(r, M, z)^2 \]

Overdensity of individual dark matter halos

Halo mass function

Ando & Komatsu arXiv: 1301.5901, 0512217
KF & Linden PRD.91.083501, arXiv: 1412.7545
Anisotropy of the Extragalactic DM signals

\[C_\ell(E_s) = \frac{1}{I(E_s)^2} \int \frac{d\chi}{\chi^2} W^2[(1 + z)E_s, \chi] P_{\delta^2}(k, z) \]
Anisotropy of the Extragalactic DM signals

\[C_\ell(E_s) = \frac{1}{I(E_s)^2} \int \frac{d\chi}{\chi^2} W^2[(1 + z)E_s, \chi] P_{\delta^2}(k, z) \]

Correlation between particles in the same halo & two distinct halos

Ando & Komatsu arXiv: 1301.5901, 0512217
KF & Linden PRD.91.083501, arXiv: 1412.7545
Anisotropy of the Extragalactic DM signals

\[C_\ell(E_s) = \frac{1}{I(E_s)^2} \int \frac{d\chi}{\chi^2} W^2[(1 + z)E_s, \chi] P_\delta^2(k, z) \]

Correlation between particles in the same halo & two distinct halos

Power spectrum of DM halos

\[P(k, z) = P_{1h}(k, z) + P_{2h}(k, z) \]

\[P_{1h}(k, z) = \int dM \frac{dn}{dM} |\tilde{u}(k, M)|^2 \]
Substructure Contribution

Effective DM density that contributes to synchrotron

$$\rho_{\text{sync}}^2(r, M) = \rho_{\text{DM}}^2(r, M) \frac{\rho_B}{\rho_B + \rho_{\text{CMB}}}$$
Substructure Contribution

Effective DM density that contributes to synchrotron

\[\rho_{\text{sync}}^2(r, M) = \rho_{\text{DM}}^2(r, M) \frac{\rho_B}{\rho_B + \rho_{\text{CMB}}} \]

Dark matter substructure distribution

Normalized by volume fraction

\[1 - f_s(r) = 7 \times 10^{-3} \left(\frac{\rho_h(r)}{\rho_h(r = 100 \text{ kpc})} \right)^{-0.26} \]

Kamionkowski+ PRD 81 043532 (2010)
Substructure Contribution

Effective DM density that contributes to synchrotron

\[\rho_{\text{sync}}^2(r, M) = \rho_{\text{DM}}^2(r, M) \frac{\rho_B}{\rho_B + \rho_{\text{CMB}}} \]

Dark matter substructure distribution

Magnetic field structure

\[B(M, r) = B_0 \left(\frac{M}{M_0} \right)^\alpha \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-3\beta\eta/2} \]

Normalized by volume fraction

\[1 - f_s(r) = 7 \times 10^{-3} \left(\frac{\rho_h(r)}{\rho_h(r = 100 \text{kpc})} \right)^{-0.26} \]

Kamionkowski+ PRD 81 043532 (2010)

\[B_{\text{sub}} = 4 \mu G \text{ for } M = 10^{14} M_\odot \]
Results with different DM models

<table>
<thead>
<tr>
<th>Case</th>
<th>m_{DM} (GeV)</th>
<th>annihilation channel</th>
<th>$\langle \sigma v \rangle$ (cm3s$^{-1}$)</th>
<th>r_{sub}</th>
<th>B^*_{sub} (μG)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50</td>
<td>$b\bar{b}$</td>
<td>3×10^{-26}</td>
<td>8</td>
<td>8</td>
<td>72.64</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>leptons</td>
<td>8.4×10^{-27}</td>
<td>4</td>
<td>4</td>
<td>44.58</td>
</tr>
<tr>
<td>III</td>
<td>23</td>
<td>charge coupled</td>
<td>7.2×10^{-27}</td>
<td>8</td>
<td>8</td>
<td>56.65</td>
</tr>
</tbody>
</table>

![Graph showing $m_{DM} = 50$ GeV, $\chi^2 = 72.64$](https://example.com/graph1.png)

![Graph showing $C_l (l+1)/2\pi$ vs. l for different frequencies](https://example.com/graph2.png)
A Consistent Picture

<table>
<thead>
<tr>
<th>Case</th>
<th>m_{DM} (GeV)</th>
<th>annihilation channel</th>
<th>$\langle \sigma v \rangle$ (cm^3s^{-1})</th>
<th>r_{sub} (r_{vir})</th>
<th>B_{sub}^* (μG)</th>
<th>χ^2</th>
<th>χ^{2a}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50</td>
<td>bb</td>
<td>3×10^{-26}</td>
<td>8</td>
<td>8</td>
<td>72.64</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>leptons</td>
<td>8.4×10^{-27}</td>
<td>4</td>
<td>4</td>
<td>44.58</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>23</td>
<td>charge coupled</td>
<td>7.2×10^{-27}</td>
<td>8</td>
<td>8</td>
<td>56.65</td>
<td></td>
</tr>
</tbody>
</table>

KF & Linden PRD.91.083501, 1412.7545
A Consistent Picture

<table>
<thead>
<tr>
<th>Case</th>
<th>(m_{\text{DM}}) (GeV)</th>
<th>(\langle \sigma v \rangle) (cm(^3)s(^{-1}))</th>
<th>(r_{\text{sub}}) ((r_{\text{vir}})) ((\mu\text{G}))</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50</td>
<td>(3 \times 10^{-26})</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>(8.4 \times 10^{-27})</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>III</td>
<td>23</td>
<td>(7.2 \times 10^{-27})</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

![Graphs showing T vs \(\nu \) (GHz) and \(C_l (l(l+1)) / 2\pi \) vs \(l \)]

KF & Linden PRD.91.083501, 1412.7545
A Consistent Picture - model III

<table>
<thead>
<tr>
<th>Case</th>
<th>m_{DM} (GeV)</th>
<th>Annihilation Channel</th>
<th>$\langle \sigma v \rangle$ (cm3s$^{-1}$)</th>
<th>r_{sub}</th>
<th>B_{sub}^* (µG)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50</td>
<td>$b\bar{b}$</td>
<td>3×10^{-26}</td>
<td>8</td>
<td>8</td>
<td>72.64</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>leptons</td>
<td>8.4×10^{-27}</td>
<td>4</td>
<td>4</td>
<td>44.58</td>
</tr>
<tr>
<td>III</td>
<td>23</td>
<td>charge coupled</td>
<td>7.2×10^{-27}</td>
<td>8</td>
<td>8</td>
<td>56.65</td>
</tr>
</tbody>
</table>

$T[K]$ vs $\nu[GHz]$

$C(l(l+1)/2\pi)$ vs l
Alternative to Substructure - Alfven Re-acceleration in Galaxy Clusters

Image credit: Bonafede et al. 2014
Alternative to Substructure - Alfven Re-acceleration in Galaxy Clusters

Image credit: Bonafede et. al. 2014

KF & Linden submitted to PRD, 1506.05807
Alternative to Substructure - Alfven Re-acceleration in Galaxy Clusters

\[
\frac{\partial W_k(t)}{\partial t} = -\Gamma(k)W_k(t) + I_A(k, t)
\]

\[
\frac{\partial f}{\partial t} = \frac{1}{p} \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial f}{\partial p} + S p^4 f \right]
\]
Alternative to Substructure - Alfven Re-acceleration in Galaxy Clusters

\[\frac{\partial W_k(t)}{\partial t} = -\Gamma(k)W_k(t) + I_A(k, t) \]

\[\frac{\partial f}{\partial t} = \frac{1}{p} \frac{\partial}{\partial p} \left[p^2 D_{pp} \frac{\partial f}{\partial p} + Sp^4 f \right] \]

Re-acceleration of electrons by Alfven waves that are excited by cluster mergers can substitute the substructure contribution.
Conclusion
Conclusion

- Synchrotron emission from dark matter annihilations could explain the ARCADE-2 excess while being consistent with anisotropy limits
Conclusion

• Synchrotron emission from dark matter annihilations could explain the ARCADE-2 excess while being consistent with anisotropy limits

• Need contribution from extended substructure & B-field OR Alfvenic re-acceleration
Conclusion

- Synchrotron emission from dark matter annihilations could explain the ARCADE-2 excess while being consistent with anisotropy limits.

- Need contribution from extended substructure & B-field OR Alfvenic re-acceleration.
Conclusion

• Synchrotron emission from dark matter annihilations could explain the ARCADE-2 excess while being consistent with anisotropy limits

• Need contribution from extended substructure & B-field OR Alfvénic re-acceleration
Conclusion

• Synchrotron emission from dark matter annihilations could explain the ARCADE-2 excess while being consistent with anisotropy limits

• Need contribution from extended substructure & B-field OR Alfvénic re-acceleration