The PandaX Dark Matter Experiment

Xun Chen

Shanghai Jiao Tong University (On behalf of the **PANDAX** Collaboration) TeV Particle Astrophysics 2015, Kashiwa Japan

Oct 29, 2015

Outline

- Introduction
- The PandaX-I Detector
- Data Analysis and Results of PandaX-I
- Future programs of PandaX
- Summary

China JinPing Laboratory (CJPL)

TeVPA 2015, Kashiwa Japan

Roadmap of PandaX

• PandaX = Particle and Astrophysical Xenon Experiments

PandaX-I 120 kg DM 2009 – 2014

PandaX-II 500 kg DM 2014 – 2017

PandaX-III 200 kg – 1 ton NLDBD 2016 – 2022

PandaX-IV 20 – 30 t DM 2020 – 2025

Infrastructure

- Cryogenics and Gas Handling: "Cooling Bus"
- Shield with Polyethylene, copper and lead
- Used in both PandaX-I & II

TPC of PandaX-I

120 kg of LXe

Key design goal: high light collection efficiency

PandaX-I First Results

- Disfavor all previously positive signals
- At low mass region, our results more constraining than XENON100 first results with similar exposure TeVPA 2015, Kashiwa Japan

PandaX-I Full Exposure Run

Phys.Rev. D92 (2015) 5, 052004

- 80.1 live-day × fiducial mass 54 kg (× 7 exposure)
- Calibrations with much larger statistics (ER/NR)
- Updated energy modeling at low recoil energy and improved treatment to low mass WIMPs
- Better understanding/modeling of background
- Blinded analysis: FV and energy acceptance defined blindly using FoM based on background expectation and exposure
- Likelihood approach to final results

Detector Parameters

$$E_{ee}^{ce} = w(\frac{S1}{PDE} + \frac{S2}{gas gain \times EEE})$$

- <u>w = 13.7 eV (NEST)</u>
- Photon detection efficiency (PDE): 9.55(1.0)%
- Electron extraction efficiency (EEE): 82.1(7.4)%

neutron calibration with ²⁵²Cf

Nuclear Recoil Band

- Observe significant "single scatter" events with suppressed S2
- "X"-events in chargeless region
 - Below cathode (5cm)
 - "Skin"

Nuclear Recoil Band after cut

- Charge pattern cut developed to remove the "X"events effectively.
- MC with NEST model agrees well with the data

ER/NR discrimination

Event Type	# events
total	1520
Below NR median	12
Accidental	1.6

- "Leakage" =
 10.4/1520=0.68(23)%
- Expected Gaussian: 0.5%

ER background

Accidental Background

• Coincidence combination of isolated S1 and S2

Blinded Analysis

• Fiducial volume and S1 cut determined blindly by maximizing the counting sensitivity based on the background expectation below the NR median

	ER	Accidental	Neutron	Total expected
All	503.7	35.1	0.35	539.1
Below NR med	2.5	4.2	0.18	6.9

All the values are expectations!

Unblinded Vertex Distribution

Search For DM

Limits on DM

- Full exposure results with an improved analysis confirmed the finding from the first results, disfavoring all positive WIMP claims
- Tighter bound than superCDMS above WIMP mass of 7 GeV/c²
- Best reported* WIMP
 limits below 5.5 GeV/c² in
 xenon community

Profile likelihood fit using DM and background distribution.

*LUX chose a cutoff below 3 keVnr, whereas we used the NEST model all the way.

PandaX-II: 500 kg LXe

- Started construction June 2014
- Presently under commissioning
- Expect to start dark matter data taking in 2015
- Expected running time for physics: 2 years

PandaX-II Expected Sensitivity

PandaX-II covers significant region in the SUSY WIMP parameter space.

PandaX future Programs

- CJPL-II (ready in 2016)
- Double beta decay (PandaX-III) and ultimate DM (PandaX-IV)

Summary

- PandaX-I finished DM search with 80.1 day ×54 kg exposure
 - Data disfavor previously reported signals from other experiments
 - Tighter bound than superCDMS above WIMP mass of 7 GeV/c2
 - Best reported WIMP limits below 5.5 GeV/c2 in xenon community
- Learn A LOT from PandaX-I experience
- PandaX-II being commissioned.
- More PandaX programs planned in CJPL-II.

Backup Slides

Nuclear recoil band: data vs MC

Established quantitative understanding of the "X" event by Monte Carlo

Tuned MC (efficiency applied) is able to reproduce the full NR distribution observed in the data

PANDAX

Low NR energy model

Comparison of analysis thresholds

Unbinned likelihood function

$$\begin{split} & \mathsf{DM}\,\mathsf{PDF} \\ & \Pi_{i=1}^{i=N_m} [\frac{N_{DM}(1+\delta_{DM})P_{DM}(\mathrm{S1}^i,\mathrm{S2}^i)\epsilon_{NR}(\mathrm{S1}^i,\mathrm{S2}^i)}{N_{exp}} \\ & \mathsf{Average}\,\,\mathsf{DM}\,\mathsf{efficiency}\,(\mathsf{WIMP}\,\mathsf{mass}\,\mathsf{dep}): \frac{\langle \varepsilon_{\mathrm{DM}} \rangle = \int P_{\mathrm{DM}}(S1,S2)\varepsilon_{\mathrm{NR}}(S1,S2)dS1dS2}{N_{\mathrm{R}}(S1,S2)dS1dS2} \end{split}$$

TeVPA 2015, Kashiwa Japan

PandaX-I sensitivity

TeVPA 2015, Kashiwa Japan