

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Extragalactic Sources of Very High Energy Gamma-Ray Emission: Highlights from Imaging Atmospheric Cherenkov Telescopes

Daniel Mazin Institute for Cosmic Ray Research, University of Tokyo Max Planck Institute for Physics, Munich <u>mazin@icrr.u-tokyo.ac.jp</u>

TeV Particle Astrophysics conference, Kashiwa, Japan, 2015 October 26-30

Sponsored by

Outline

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Extragalactic sky at VHE gamma rays
- BL Lacs
- FSRQs
- Radio galaxies
- EBL/IGMF studies
- Lorentz invariance Violation limits (Fundamental physics)

IMBO= in my biased opinion

Outlook

Image intensityShower energy

Image orientationShower direction

Image shape→ Primary particle

Systems of Cherenkov telescopes

A

Better background reduction Better angular resolution Better energy resolution

Current status: 3 major observatories

Current status: 3 major observatories

Differential Sensitivities

 $\Delta_{p} \cdot \Delta_{g} \ge \frac{1}{2} t$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin

TeV Sky 2015

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin

9

TeV Sky 2015

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Fermi/LAT (E>50GeV)

Adaptively Smoothed

More sources but less photons

2FHL, see Dominguez on Monday

Daniel Mazin

BLAZARS

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The "LEGO" structure of AGN/Blazars

Of all galaxies:

~1% Active Nucleus

~0.1% relativistic jets

BLAZAR = an AGN with a relativistic jet pointing at angles close to the line of sight, and whose emission is dominated by relativistic effects

Daniel Mazin

BL Lacs

Cosmic Ray Research

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Most popular source class (47)

- Best studied class of extragalactic TeV sources
- "Easy" to detect because the jet points towards us with a very small angle (Doppler boosting)
- Probably all are flaring on time scales of than ~month
- Some min-scale variability detected
- Vast on spectra, light curves and Multiwavelength correlations

HBL/IBL/LBL

- High Peaked / Intermediate Peaked / Low Peaked BL Lacs (based on 5GHz / 1keV ratio)
- "New" classification based on synchrotron peak position:
- HSP / ISP / LSP

HBL highlights: Mrk 421 / 501

MAGIC+VERITAS

- Extensive MWL campaign (VHE data by MAGIC + VERITAS) in Jan 2013 showed a shift of both peaks to lower energies
- Such HBL moving towards IBL has never been seen before for any blazar

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Flare in June 2014
- Flux doubling time scale < 10 minutes

20 TeV?

HBL highlights: Mrk 421 / 501

$\Delta_{p}.\Delta_{g} \ge \frac{1}{2}t$

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

ICRRR Institute for Cosmic Ray Research University of Tokyo

MAGIC+VERITAS

HBL highlights: PG 1553

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Periodic P=(785+/-14)d emission from a blazar! Not yet at TeV but ... Radio (OVRO) 0.18 F [Jy] 0.17 0.16 0.15 0.14 Optical (KVA) F (R band) [mJy] 0.8 X rays (XRT) Counts/s HE gamma (Fermi-LAT, E>300 NeV 04 0.35 0.3 90 80 70 60 50 40 30 20 coordinated campaign with VHE gamma (MAGIC, E > 150 G V) F x 10²[cm⁻²s⁻¹] HESS/MAGIC and VERITAS starts 2015 0.2 0.40.6 0.8 1.2 14 1.8 1.6

Prandini et al, ICRC2015

Daniel Mazin

TeVPA, Kashiwa, Japan, 2015 October 27

Phase

IBL highlights

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- three new IBLs (now in total 8 IBLs)
 - Discovery of S3 1227+25 (z=0.135) VERITAS
 - Discovery of RGB J2243+203 (z>0.39) VERITAS
 - Discovery of BL Lac S2 0109+22 (0.265) MAGIC
- BL Lacertae flare (z=0.069) MAGIC confirms daily variability time scale

MAGIC detects an increased activity from BL Lacertae at very high energy gamma-rays

ATel #7660; Razmik Mirzoyan (Max-Planck-Institute for Physics) on behalf of the MAGIC collaboration on 18 Jun 2015; 19:02 UT Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Daniel Mazin

FSRQs highlights: PKS 1441+25

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Redshift reminder: z=0.940!!
- Very strong detection by MAGIC
- High statistics allows one to better reconstruct energy spectrum
- About 10 spectral points between 40 and 300 GeV
- Spectrum is very soft, suggests intrinsic origin and an IC peak around 10-30 GeV (below MAGIC measurement)

FSRQs highlights: PKS 1441+25

Triggered by MAGIC alert, VERITAS observed and detected the source, too
Missed the night with the highest flux though...

TeVPA, Kashiwa, Japan, 2015 October 27

Gravitationally lensed blazar

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Delay of ~11days known from radio and Fermi/ LAT
- Original flare (Fermi-trigger) missed by MAGIC due to the full moon period
- QSO B0218+357 was observed during expected delayed flare by MAGIC for 14 consecutive nights (all good weather), 1-2 hrs per night
- The flare duration is about 4 days
- The flare can be fitted with a symmetric Gaussian shape centered at MJD=56863.7 and σ≈1day

See talk by D. Dominis on Monday

Radio galaxies

Dyrda et al 2015 (ICRC2015)

No variability in VHE seen Spectral index ~ 2.8 4% C.U. >580 GeV

10-14

10⁻¹⁵

Radio galaxies

Long term monitoring of M87 with MAGIC. No flare since 2010!

- Perfect match with Fermi/ LAT
- TeV index: ~2.5
- almost 5 orders of magnitude in energy with very little curvature in the spectrum

Blazar highlight: IC310

Rapid flare from IC310, z=0.018 (MAGIC). Radio angle 10-20deg

Variability time scale < 4.8 min is shorter than the light crossing time of the event horizon of the IC 310 central black hole

Hard spectrum without a cutoff up to TeV energies

Shock in the jet models have troubles explaining IC 310 flare

- Plausible alternative: pulsar-like emission from the magnetosphere of the BH (e.g. Levinson & Rieger 2011)
- But: see critics of M. Barkov yesterday

Daniel Mazin

TeVPA, Kashiwa, Japan, 2015 October 27 See talk by J. Sitarek later today

The EBL energy density: models

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin

Imprint of the EBL on spectra of HE/VHE gamma ray spectra of distant sources

z = 0.1, 0.3, 0.6, 1.0

 10^{1}

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- peaks at ~4*Ethreshold
- Delta function approximation is not precise

- Attenuation of Gamma-ray flux is calculated by integrating over number density of EBL, angles between photons, and distance to the source.
- The attenuation factor is sensitive to the EBL density

1ES 1011+496 flare (Feb'14)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Highest ever flux from this source in X- and γ rays
- Large VHE flux variability in day timescales
- No evidence for intra-night variability (~40' /night snapshots)
- Relatively stable spectral shape through the flare

See talk by A. Moralejo on Monday

1ES 1011+496 flare (Feb'14)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin

TeVPA, Kashiwa, Japan, 2015 October 27

EBL constraints with many sources

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

TeVPA, Kashiwa, Japan, 2015 October 27

Also distant sources available!

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

	Classification	Discoverer	Date	Redshift
S3 0218+35	Blazar	MAGIC	2014.07	z = 0.944
PKS 1441+25	FSRQ	MAGIC	2015.04	z = 0.939
PKS 1424+240	HBL	VERITAS	2009.06	z ~ 0.6
3C 279	FSRQ	MAGIC	2008.06	z = 0.5362
PG 1553+113	HBL	H.E.S.S./MAGIC	2006.03	z ~ 0.5
IES 0647+250	HBL	MAGIC	2011.09	z = 0.45
4C +21.35	FSRQ	MAGIC	2010.06	z = 0.432

PKS 1441+25 flare (z=0.939)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Not sure about details of the analysis

but derived upper limits by VERITAS are similar as the ones derived by MAGIC

See talk by A. Viana later today

Lorentz invariance Violation limits

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Using flare Mrk 501 data
- Can check if there is a delay / lag between higher and lower energies
- IACTs are best for quadratic term

95% CL Quantum Gravity limits				
	Linear term	Quadratic term		
Sub-luminal	8.5 x 10 ¹⁷ GeV	1.15 x 1011 GeV		
Supra-luminal	6.4 x 10 ¹⁷ GeV	1.0 x 10 ¹¹ GeV		
PKS 2155-304 (sub.)	2.1 x 10 ¹⁸ GeV	6.4 x 10 ¹⁰ GeV		
GRB 090510 (sub. / sup.)	(1.8 x 10 ¹⁹ / 3.2 x 10 ¹⁹) GeV	(4.0 x 10 ¹⁰ / 3.0 x 10 ¹⁰) GeV		
Mrk 501 (MAGIC 2005)	2.1 x 1017 GeV	2.6 x 10 ¹⁰ GeV		

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The instruments are getting better!

IACT sensitivities

De Naurois & DM, C.R.Physique 16 (2015)

Outlook

Field far from being saturated

Missing (even after CTA): large FoV to look for transients

Daniel Mazin

TeVPA, Kashiwa, Japan, 2015 October 27

BACKUP

Extreme objects in the LMC

- First glimpse of the LMC population of (stellar-type) particle accelerators
- Extreme environment:
 - Large CR density
 - Large IR

First

extragalactic

Stellar

Sources

- \rightarrow Very efficient radiation mechanisms
- First TeV superbubble
 - Possible sources of UHECRs

H.E.S.S.

Daniel Mazin

First

Superbubble

FSRQs highlights: PKS 1441+25

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

MAGIC

- shift of synchrotron and IC peaks to higher energies
- significant variation of the X-ray and HE ray spectral indexes
- VHE variable, HE stable!
- emitting region originating in the jet just outside the broad line region
- high degree of optical polarization-the emission may come from a compressed region in the jet, like an internal shock

Daniel Mazin

TeVPA, Kashiwa, Japan, 2015 October 27

See talk by Nievas on Monday

Limits from IACTs: axions

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Mazin