#### "The Possible Extragalactic Source of UHECRs at the Telescope Array Hotspot "

To be Submitted to PRD, 2015.

Hao-Ning He,<sup>1,2</sup> Alexander Kusenko,<sup>1,3</sup> Shigehiro Nagataki,<sup>4</sup>

#### Bin-Bin Zhang,<sup>5</sup> Rui-Zhi Yang,<sup>6, 2</sup> and Yi-Zhong Fan<sup>2</sup>

<sup>1</sup>Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA <sup>2</sup>Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China <sup>3</sup>Kavli IPMU (WPI), University of Tokyo, Kashiwa, Chiba 277-8568, Japan <sup>4</sup>Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan <sup>5</sup>Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899, USA <sup>6</sup>Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany

# **CRIKEN** Shigehiro Nagataki

26-30 Oct. 2015 TeV Particle Astrophysics 2015, Kashiwa, Japan Presentation Date: 26th October 2015



Max significance 5.1 $\sigma$  (N<sub>on</sub> = 24, N<sub>bg</sub>=6.88) for 7 years Centered at R.A=148.4°, Dec.=44.5° (shifted from SGP by 17°)



## **Previous Theoretical Studies**

 Motivated by Past Observations of Multi-plets (AGASA) and the Cluster (PAO), detailed numerical studies were done (e.g. Yoshiguchi,S.N.,Sato +03,04; Takami+06,10,12; Yuskel+12; Rouille d Orfeuil, Allard,+14,...).

But Hard to Identify the Source(s) yet...



B. Rouillé d'Orfeuil<sup>1,2</sup>, D. Allard<sup>3</sup>, C. Lachaud<sup>3</sup>,
E. Parizot<sup>3</sup>, C. Blaksley<sup>3</sup>, and S. Nagataki<sup>4</sup>

Yoshiguchi,S.N.,Sato +04

2014

#### Deflection and Time Delay Due to B-Fields

apparent source direction

charged particle

The Real Source

Figure from Hoffman (Modified)

# Motivation & Method of This Study



Is the Source of the Hot Spot in the Spot?

Or,

Is the Source away from the Spot due to B-Fields?

Before going to detailed numerical simulations, We did some simple analysis, and found some Very Interesting Implications!

Kawata et al. @ ICRC 2015

Black Dots are nearby galaxies. Grey line represents the Super-Galactic-Plane.

# **Our First Analysis**

- Data Sample: 72 Events with > 57EeV (5years, TA-Collaboration ApJ 2014.)
- We analyzed the 19 events of the hot-spot.



Blue: Events with > 75EeV (High Rigidity).

Red: Events with < 75EeV (Low Rigidity).

Circles represent the mean Positions of the events.

### The Source is at around The Super-Galactic-Plane?

Hao-Ning He,<sup>1,2</sup> Alexander Kusenko,<sup>1,3</sup> Shigehiro Nagataki,<sup>4</sup> Bin-Bin Zhang,<sup>5</sup> Rui-Zhi Yang,<sup>6,2</sup> and Yi-Zhong Fan<sup>2</sup>

# Magnetic Bending Effects

Effect of Regular Field:

$$\begin{split} \delta_{\mathrm{reg}} &\simeq 0.5^{\circ} Z \frac{100 \,\mathrm{EeV}}{E} \frac{D_{\mathrm{reg}}}{1 \,\mathrm{Mpc}} \frac{B_{\mathrm{reg},\perp}}{\ln \mathrm{G}} = A_1 \times \frac{100 \,\mathrm{EeV}}{E} \\ A_1 &= 0.5^{\circ} Z \, \frac{D_{\mathrm{reg}}}{1 \,\mathrm{Mpc}} \frac{B_{\mathrm{reg},\perp}}{\ln \mathrm{G}} \\ D_{\mathrm{reg}} : \mathrm{Propagation} \,\mathrm{length} \\ \mathrm{In \, the \, regular \, B-field.} \\ f(\delta_{\mathrm{dif}}, \delta_{\mathrm{rms}}) &= \frac{1}{\delta_{\mathrm{rms}} \sqrt{2\pi}} exp \left( -\frac{\delta_{\mathrm{dif}}^2}{2\delta_{\mathrm{rms}}^2} \right) \\ \mathrm{Probability \, of \, Bending \, Angle: } \delta_{\mathrm{dif}} \\ \delta_{\mathrm{rms}} &\simeq 0.36^{\circ} Z \, \frac{100 \,\mathrm{EeV}}{E} \left( \frac{D_{\mathrm{dif}}}{1 \,\mathrm{Mpc}} \right)^{\frac{1}{2}} \left( \frac{D_{\mathrm{c}}}{1 \,\mathrm{Mpc}} \right)^{\frac{1}{2}} \frac{B_{\mathrm{rms}}}{1 \,\mathrm{nG}} \\ &= A_2 \times \frac{100 \,\mathrm{EeV}}{E} \\ \frac{A_2 = 0.36^{\circ} Z \left( \frac{D_{\mathrm{dif}}}{1 \,\mathrm{Mpc}} \right)^{\frac{1}{2}} \left( \frac{D_{\mathrm{c}}}{1 \,\mathrm{Mpc}} \right)^{\frac{1}{2}} \frac{B_{\mathrm{rms}}}{1 \,\mathrm{nG}} \\ D_{\mathrm{dif}} : \mathrm{Propagation \, length} \\ \mathrm{In \, the \, random \, B-field.} \\ \end{split}$$

# Monte Carlo Fitting Engine

Probability for i-th UHECR arrives at the Earth from the observed direction From the source at (R.A.,Dec.) with A1, A2, and  $\alpha$ .

$$f_i(\delta_{\mathrm{reg},i}(\mathrm{R.A.},\mathrm{Dec.},\alpha,A_1),\delta_{\mathrm{rms},i}(A_2))$$



By the Monte-Carlo likelyhood fitting, we can obtain the best values for  $(R.A.,Dec.,A1, A2, \alpha)$  (Zhang et al.15; Feroz & Hobson 08).

# The Source is on the SGP?



Hao-Ning He,<sup>1,2</sup> Alexander Kusenko,<sup>1,3</sup> Shigehiro Nagataki,<sup>4</sup> Bin-Bin Zhang,<sup>5</sup> Rui-Zhi Yang,<sup>6,2</sup> and Yi-Zhong Fan<sup>2</sup>

# The Source is on the SGP?



| Source Name | Source Type         | Distance | $A_1$                 | $A_2$               | $P/P_{\rm bes-fit}$ |
|-------------|---------------------|----------|-----------------------|---------------------|---------------------|
|             |                     | (Mpc)    | (°)                   | (°)                 | (%)                 |
| best-fit    | -                   | -        | $17.4^{+17.0}_{11.0}$ | $9.4^{+3.7}_{-0.3}$ | 100                 |
| M82         | starburst galaxy    | 3.4      | 17.6                  | 9.6                 | 99.8                |
| UGC 05101   | star-forming galaxy | 160.2    | 11.6                  | 9.2                 | 96.9                |
| Mrk 180     | blazar              | 185      | 19.9                  | 9.3                 | 91.3                |
| UGC 03957   | galaxy cluster      | 150.3    | 14.9                  | 9.5                 | 67.4                |
| A 0576      | galaxy cluster      | 169.0    | 17.0                  | 9.4                 | 63.4                |
| Arp 55      | star-forming Galaxy | 162.7    | 1.9                   | 9.7                 | 55.3                |
| Arp 148     | star-forming Galaxy | 143.3    | 10.5                  | 10.0                | 41.8                |
| Mrk 421     | blazar              | 134      | 11.2                  | 9.9                 | 35.6                |



M82

# **§** Discussions

#### **Discussion - I**

### We can Identify the Source if we have 2000 Events. $\rightarrow$ TA $\times$ 4, EUSO,... Energy(EeV) 50 58 67 75 83 92 100 🖣 galaxy cluster staburst galaxy BL-Lac 🛆 radio galaxy ♦ star—forming galaxy

Hao-Ning He,<sup>1,2</sup> Alexander Kusenko,<sup>1,3</sup> Shigehiro Nagataki,<sup>4</sup> Bin-Bin Zhang,<sup>5</sup> Rui-Zhi Yang,<sup>6,2</sup> and Yi-Zhong Fan<sup>2</sup>

#### Discussion - II

A transient source is NOT favored. A long-duration source is favored. Multiple transient sources (e.g. some GRBs in a star burst galaxy) are also accepted.

Arrival Time Delay relative to Neutral Particles (photons) due to magnetic bending effect.

$$\Delta T = 3.3 \times 10^6 \text{yr} \frac{D}{1 \text{Mpc}} \left( \frac{\theta}{\sin \theta} - 1 \right)$$

Arrival Time Delay between two UHECRs.

$$\Delta t = \Delta T_1 - \Delta T_2 = 3.3 \times 10^4 \text{yr} \frac{D}{1 \text{Mpc}} \frac{\Delta}{0.01} \implies \text{5 years (TA's Observation)}$$

= The former UHECR should be ejected From the source about  $3.3 \times 10^4$  yr before.  $\Delta = \frac{\theta_1}{\sin \theta_1} - \frac{\theta_2}{\sin \theta_2}$  ~0.01 for a few degs.

Hao-Ning He,<sup>1,2</sup> Alexander Kusenko,<sup>1,3</sup> Shigehiro Nagataki,<sup>4</sup> Bin-Bin Zhang,<sup>5</sup> Rui-Zhi Yang,<sup>6,2</sup> and Yi-Zhong Fan<sup>2</sup>

### Discussion - III

#### Where are the B-Fields?

Random Field:  $A_2 \sim 9 - 10$ 

$$\rightarrow Z \left(\frac{D_{\text{dif}}}{1 \text{Mpc}}\right)^{\frac{1}{2}} \left(\frac{D_{\text{c}}}{1 \text{Mpc}}\right)^{\frac{1}{2}} \frac{B_{\text{rms}}}{1 \text{ nG}} = 25 - 28$$

 $\xrightarrow{\text{GMF}(\sim 1 \text{kpc}): 25 \mu\text{G.}} \text{EGMF}(\sim 1 \text{Mpc}): 25 \text{nG.}} \text{For } z=1$ Regular Field:  $A_1 \times 2 = Z \frac{D_{\text{reg}}}{1 \text{Mpc}} \frac{B_{\text{reg},\perp}}{1 \text{nG}} = 35.2^{+6.8}_{-5.4}$ For M82.

→ GMF (~1kpc):  $35\mu$ G. EGMF (~1Mpc): 35nG.

#### GMF Model is challenged by them? EGMF will be OK.

### Discussion - IV

We still believe that past Gamma-Ray Bursts/Hypernovae happened in Milky Way Can Contribute to (Sub-) UHECRs Partially.

This study was Motivated by the analysis of composition by PAO.





Calvez, Kusenko, S.N. PRL 2010

Image: UHE-Nuclei in Milky Way

### Summary

- Our Analysis Suggests that the Source of the Hot-Spot is NOT in the Hot-Spot, but around (or on) the Super-Galactic Plane.
- M82 is the closest, active star-burst galaxy from the most likely position of the source in our analysis.
- ~2000 events are necessary to pin down the source position (TA × 4, EUSO,...).
- A single transient source is not favored. A longduration and/or multiple transient source(s) are favored.
- The origin of B-fields that are responsible for the distribution of the events of the hot-spot may be extra-galactic.
- We still believe that past GRBs/Hypernovae in Milky Way can contribute to the (sub-) UHECRs.