

Overview and recent results of LHCf

Takashi SAKO (KMI/ISEE, Nagoya University) for the LHCf Collaboration

HECR Composition

- ✓ Air shower observations determine $< X_{max} > vs$. energy
- ✓ Model predictions to be compared differ at the level of experimental uncertainties
- ✓ Models must be tested by accelerator experiments

Cosmic-ray spectrum and collider energy

(D'Enterria et al., APP, 35,98-113, 2011)

LHC Era (T.Pierog, HESZ2015)

- ✓ Good agreement between post-LHC models, QGS II-04 and EPOS-LHC
- ✓ No update in SIBYLL, but very good agreement with the others. By chance???

Forward Particle Production

Forward Particle Production

✓ √ s=14 TeV p-p collision (QGSJET II-03)
 ✓ Typical p_T≈1GeV/c

=> high-E particles are emitted forward

The LHCf Collaboration

*^{,**}Y.Itow, *Y.Makino, *K.Masuda, *Y.Matsubara, *E.Matsubayashi, ***H.Menjo, *Y.Muraki, *Y.Okuno, ^{*,**}T.Sako, *M.Ueno, *Q.D.Zhou

^{*}Institute for Space-Earth Environmental Research, Nagoya University, Japan ^{**}Kobayashi-Maskawa Institute, Nagoya University, Japan

***Graduate School of Science, Nagoya University, Japan

K.Yoshida Shibaura Institute of Technology, Japan **T.Iwata, K.Kasahara, T.Suzuki, S.Torii**

Waseda University, Japan

Y.Shimizu, T.Tamura Kanagawa University, Japan

N.SakuraiTokushima University, JapanM.HaguenauerEcole Polytechnique, FranceW.C.TurnerLBNL, Berkeley, USA

O.Adriani, E.Berti, L.Bonechi, M.Bongi, G.Castellini, R.D'Alessandro, P.Papini, S.Ricciarini, A.Tiberio

A.Tricomi A-L.Perrot INFN, Univ. di Firenze, Italy INFN, Univ. di Catania, Italy CERN, Switzerland

The LHC forward experiment

- ✓ All charged particles are swept by dipole magnet
- ✓ Neutral particles (photons and neutrons) arrive at LHCf
- ✓ η >8.4 (to infinity) is covered

LHCf Detectors

- ✓ Imaging sampling shower calorimeters
- ✓ Two calorimeter towers in each of Arm1 and Arm2
- ✓ Each tower has 44 r.l. of Tungsten,16 sampling scintillator and 4 position sensitive layers

Detector performance

LHCf Operation History

- 2009-2010
 - Data taking with 900 GeV p-p collisions
 - Data taking with 7 TeV p-p collisions
- 2013 (only Arm2)
 - Data taking with 5.02 TeV p-Pb collisions
 - Data taking with 2.76 TeV p-p collisions
- 2015

– Data taking with 13 TeV p-p collisions

Publications

	Photon (EM shower)	Neutron (hadron shower)	π^{0} (limited acceptance)	π^{0} (full acceptance)	Performance
Beam test	NIM, A671 (2012) 129-136	JINST, 9 (2014) P03016			
0.9TeV p-p	PLB, 715 (2012) 298-303				IJMPA, 28 (2013) 1330036
7TeV p-p	PLB, 703 (2011) 128-134	PLB, 750 (2015) 360-366	PRD, 86, (2012) 092001	PRD submitted	
2.76TeV p-p			PRC, 89 (2014) 065209		
5.02TeV p-Pb					
13TeV p-p	Analysis in progress				
				physics results	

performance results

Forward neutron spectra in 7TeV p-p collisions

(Vs=7TeV p-p; PLB 750 (2015) 360-366)

- ✓ Zero degree production is qualitatively explained by QGSJET II
- Non-zero-degree productions (larger cross section) are underestimated by popular QGSJET II and EPOS models

$\pi^{0} p_{z}$ spectra in 7TeV p-p collisions

(PRD submitted, arXiv:1507.08764 [hep-ex])

Energy flow in 7TeV p-p collisions

- ✓ Post-LHC models (EPOS-LHC and QGSJET II-04) well explain the π^0 results, but not for neutrons
- ✓ DPMJET3 explains the neutron results, but it is not recently used for CR simulations

Vs scaling of π^0 production

- ✓ (630GeV –) 2.76TeV 7TeV good scaling within uncertaintes
- ✓ Wider coverage in y and p_⊤ with 13TeV data
- ✓ Wider Vs coverage with RHICf
 experiment in 2017 at Vs=510GeV

10⁻¹

10⁻²

10⁻³

10-4

10⁻⁵

10⁻⁶

0.2

1/σ_{inel} dơ/dx_F

Vs scaling of π^0 production

- ✓ (630GeV –) 2.76TeV 7TeV good scaling within uncertaintes
- ✓ Wider coverage in y and p_T with 13TeV data
- ✓ Wider Vs coverage with RHICf experiment in 2017 at Vs=510GeV

10⁻¹

10⁻²

10⁻³

10-4

10⁻⁵

10⁻⁶

0.2

XF

1/σ_{inel} dơ/dx_F

X_F

19

13TeV operation in June 2015

- LHCf physics fills: 10-13 June 2015
- Total physics data taking: 26.6 hours
- Observed high energy (>100GeV) particles : **39M events**
- π^0 candidates : **0.5 M events**

13TeV operation in June 2015

2TeV π^0 by Arm2

13TeV operation in June 2015

Joint analysis with ATLAS

Summary

- ✓ Collider data improve the hadronic interaction models used in the cosmicray studies
- ✓ LHCf measures forward particle spectra, both baryons and mesons, carrying a large fraction of collision energy
 - LHCf π^0 spectra are well explained by the post-LHC models, EPOS-LHC and QGSJET II-04
 - LHCf neutron spectra show excess, 30% in energy flow, than the post-LHC models
 - LHCf confirmed scaling of π^0 production at 2.76 TeV and 7 TeV data, but in a limited phase space
- ✓ 13TeV data taking in 2015 was successful
 - Scaling test with wider phase space at the highest energy
 - More insight to the process by collaborating with ATLAS
- ✓ Low energy extension at RHIC is scheduled in 2017
 - Wider Vs coverage for scaling test => important to access > 10^{17} eV