Asymmtric Dark Matter and an Anti-v signal

Hajime Fukuda (Kavli IPMU)

in collaboration with

Shigeki Matsumoto (Kavli IPMU), Satyanarayan Mukhopadhyay (U. Pittsburgh)

arXiv:1411.4014, Phys. Rev. D 92, 013008

A Rigid "New Physics"

Is WIMP sufficient?

• New physics must be at O(v)!

Can we sincerely believe it?

Asymmetric DM (ADM)

$$\rho_{\rm DM} \sim 5 \rho_{\rm baryon}$$

Can we use any symmetry?

Basic properties of ADM

- Mass around GeV
- B-L sharing with the SM

$$\Delta \mathcal{L}_{\mathrm{ADM}} \sim \frac{\mathcal{O}_{\mathrm{ADM}}^{n} \mathcal{O}_{\mathrm{SM}}^{m}}{\Lambda_{\mathrm{ADM}}^{n+m-4}}$$

- Conserving the total B-L
- SM singlet

···Not constraining at all

	WIMP	ADM	
Mass	EWSB	(1-10) GeV	
Relic	WIMP	B-L	
abundance	miracle	asymmetry	
Interaction	SU(2) _L , etc.	B-L share Annihilation	
Detection	Collider DD ID	model dependent	

	WIMP	ADM	
Mass	EWSB	(1-10) GeV	
Relic abundance	WIMP miracle	B-L asymmetry	
Interaction	SU(2) _L , e	eally?	
Detection	Collider DD ID	model dependent	

Assumption

- Use chem. equilibrium to share B-L
 - n_B~n_{DM} w/o tuning

What can be signal?

• Let's try!

B-L Sharing interaction $\Delta \mathcal{L}_{\mathrm{ADM}} \sim \frac{\mathcal{O}_{\mathrm{ADM}}^n \mathcal{O}_{\mathrm{SM}}^m}{\Lambda_{\mathrm{ADM}}^{n+m-4}}$ Y neutral B-L charged B-

• ν signal at indirect detection

neutrino and ADM

 Decay or scattering always lead (anti)neutrino signal!

	е	p	ν
B-L	-1	1	-1
Q_{EM}	-7	1	0

 $Q_{EM}=0$ and $B-L\neq 0$ \Rightarrow only ν

Particle or Antiparticle?

• Is signal ν or anti- ν ?

- Is (B-L)_{ADM} positive or negative?
- This seems to depend on $\Delta \mathcal{L}_{\mathrm{ADM}}$

Balancing chem. pot. μ Particle densities

Earlier study

- DM mass is independent of $\Delta \mathcal{L}_{\mathrm{ADM}}$
 - with a DM-only hidden sector

Ibe, Matsumoto and Yanagida 2012

$$m \sim 5.1/Q_{\rm DM}\,{\rm GeV}$$

- (B-L)_{ADM} is positive
- Complicated hidden sectors?

Symmetry and charge

- No relation depends on $\Delta \mathcal{L}_{\mathrm{ADM}}$
- n_{particle} can be written in n_{charge}

Then…?

- (B-L)_{ADM} is always positive
- Always anti- ν signal!
 - Indirect detection is possible

Summary

- ADM is a hopeful DM model
- We predict a generic signal
 - Anti- ν signal is important
 - · Hyper-K, INO, ···etc.