Asymmetric Dark Matter and an Anti-ν signal

Hajime Fukuda (Kavli IPMU)
in collaboration with
Shigeki Matsumoto (Kavli IPMU), Satyanarayan Mukhopadhyay (U. Pittsburgh)
A Rigid “New Physics”
Is WIMP sufficient?

• New physics must be at $O(\nu)$!

• Can we sincerely believe it?
Asymmetric DM (ADM)

\[\rho_{DM} \sim 5 \rho_{baryon} \]

Can we use any symmetry?

DM with \(B - L \)
Basic properties of ADM

- Mass around GeV
- B-L sharing with the SM

\[\Delta \mathcal{L}_{\text{ADM}} \sim \frac{\mathcal{O}_{\text{ADM}}^n \mathcal{O}_{\text{SM}}^m}{\Lambda_{\text{ADM}}^{n+m-4}} \]

- Conserving the total B-L
- SM singlet

\[\cdots \text{Not constraining at all} \]
<table>
<thead>
<tr>
<th></th>
<th>WIMP</th>
<th>ADM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>EWSB</td>
<td>(1-10) GeV</td>
</tr>
<tr>
<td>Relic abundance</td>
<td>WIMP miracle</td>
<td>B-L asymmetry</td>
</tr>
<tr>
<td>Interaction</td>
<td>SU(2)$_L$, etc.</td>
<td>B-L share Annihilation</td>
</tr>
<tr>
<td>Detection</td>
<td>Collider DD ID</td>
<td>model dependent</td>
</tr>
<tr>
<td></td>
<td>WIMP</td>
<td>ADM</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mass</td>
<td>EWSB</td>
<td>(1-10) GeV</td>
</tr>
<tr>
<td>Relic abundance</td>
<td>WIMP miracle</td>
<td>B-L asymmetry</td>
</tr>
<tr>
<td>Interaction</td>
<td>SU(2)_L, et al.</td>
<td>B-L share distribution</td>
</tr>
<tr>
<td>Detection</td>
<td>Collider DD, ID</td>
<td>model dependent</td>
</tr>
</tbody>
</table>
Assumption

• Use chem. equilibrium to share B-L
 • $n_B \sim n_{DM}$ w/o tuning
What can be signal?

- Let’s try!

$$\Delta L_{ADM} \sim \frac{\mathcal{O}^n_{ADM} \mathcal{O}^m_{SM}}{\Lambda_{ADM}^{n+m-4}}$$

- ν signal at indirect detection
neutrino and ADM

• Decay or scattering always lead (anti)neutrino signal!

\[\Delta \mathcal{L}_{\text{ADM}} \sim \frac{\mathcal{O}_{\text{ADM}}^n \mathcal{O}_{\text{SM}}^m}{\Lambda_{\text{ADM}}^{n+m-4}} \]

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>p</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-L</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(Q_{\text{EM}})</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(Q_{\text{EM}} = 0 \) and \(B-L \neq 0 \) ⇒ only \(\nu \)
Particle or Antiparticle?

• Is signal ν or anti-ν?

• Is $(B-L)_{\text{ADM}}$ positive or negative?

• This seems to depend on ΔL_{ADM}

Balancing chem. pot. μ \rightarrow Particle densities
Earlier study

• DM mass is independent of $\Delta \mathcal{L}_{ADM}$
 • with a DM-only hidden sector

Ibe, Matsumoto and Yanagida 2012

$$m \sim \frac{5.1}{Q_{DM}} \text{GeV}$$

• $(B-L)_{ADM}$ is positive

• Complicated hidden sectors?
Symmetry and charge

- No relation depends on ΔL_{ADM}
- n_{particle} can be written in n_{charge}
Then⋯?

- \((B-L)_{ADM}\) is always positive
- **Always anti-\(\nu\) signal!**
 - Indirect detection is possible
Summary

• ADM is a hopeful DM model
• We predict a generic signal
 • Anti-ν signal is important
 • Hyper-K, INO, ⋅⋅⋅ etc.