Searching for Singlet Majorana fermion dark matter

Yue-Lin Sming Tsai Kavli IPMU, The University of Tokyo

This work is in collaboration with Shigeki Matsumoto and Satyanarayan Mukhopadhyay

1. Motivation

2. Dark Matter effective operators (With help from UV models)

3.Results

4. Summary

Credit: Tim Tait

milait

Phenomenological WIMP DM models

	Scientific name	Popular name	Spin	SU(2) _L	U(1) _Y		
1	Singlet scalar	The simplest DM	0	0	0		
	Doublet scalar	Inert Higgs DM	0	1/2	1/2		
	Triplet scalar	着15-5%。 二、子后1	0	1	0		
	Triplet scalar II		0	1	1		
	Singlet fermion	Bino/Singlino	1/2	0	0		
	Doublet fermion	Higgsino	1/2	1/2	1/2		
	Triplet fermion	Wino	1/2	1	0		
	Triplet fermion II		1/2	1	1		
200			and a				
	Singlet vector	Little Higgs DM	1	0	0		
	Doublet vector	新版版 12-76 1	1	1/2	1/2		
	Triplet vector		1	1	0		
	Triplet vector II	and the states	1	1	1		
1	· · · · · · · · · · · · · · · · · · ·		21. 23	Credit: Shigeki Matsumot			

DM still leaves a lot unknown:

- Spin
- Electroweak charge
- Real/Majorana or Complex/Dirac

Credit: Qing-Hong Cao, Chuan-Ren Chen, Chong Sheng Li, Hao Zhang (0912.4511)

Can we use DM EFT all the time?

DM at	Is EFT applied?	Reason	
 Coillders	Conditionally applied	Only for the region of √s< <lambda< td=""><td></td></lambda<>	
Direct detection	YES	small recoil energy (zero moment exchange)	
Indirect detection	Applied for region Lambda>2*mx	No matter the DM source located at GC, dSphs, or near the earth, the velocity is very small	
Relic density	Generally applied	Can be applied at Lambda»2mx region but more precised at Lambda>3*mx	

Advantage: Simple particle contain Disadvantage: Simple particle contain

Dark Matter effective operators (With help from UV models)

The effective Model to start with

The simplest settings:

- Majorana fermion
- Singlet
- Z2-symmetry
- WIMP
- dimension<7

EFT requirements: (Heavy mediator)

- lambda>2 mx
- lambda>3 mx
- lambda>Higgs vev

The DM in this class:

- Bino neutralino
- Singlino neutralino
- Sterile neutrino

Minimal requirement of not producing mediator particle on shell in a process.

EFT calculation of annihilation rate accurate to O(25%) when compared to s-channel UV completions.

The Model to start with

Dimension-5 $\mathcal{O}_S = (\bar{\chi}\chi)|H|^2$ $\mathcal{O}_{PS} = (\bar{\chi}i\gamma_5\chi)|H|^2$ Dimension-6 $\mathcal{O}_Q = (\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{Q}_i\gamma_{\mu}Q_j)$ $\mathcal{O}_U = (\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{U}_i\gamma_{\mu}U_j)$ $\mathcal{O}_D = (\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{D}_i\gamma_{\mu}D_j)$ $\mathcal{O}_L = (\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{L}_i\gamma_{\mu}L_j)$ $\mathcal{O}_E = (\bar{\chi}\gamma^{\mu}\gamma_5\chi)(\bar{E}_i\gamma_{\mu}E_j)$ $\mathcal{O}_H = (\bar{\chi}\gamma^{\mu}\gamma_5\chi)(H^{\dagger}i\overline{D}_{\mu}H)$

Table 1: SM gauge invariant operators describing interactions between the DM and the SM particles.

- Family universality assumed
- All the opertaors included

direct detection

production at colliders

The global study of Singlet Majorana DM

Summary and Conclusion

- A new skill to test collider constraints in DM EFT.
- Relic density still dominates the shape of allowed region in (mx, Lambda) plane.
- Considering the relationships between UV model and EFT, we are able to put more solid limit on DM (mx,Lambda) plane. If mediator is heavy enough, lambda>3 mx, DM has a mass limit, mx/GeV<900.
- The collider constraints becames weaker in lower DM mass region.
- Our limits can be applied to bino/siglino/sterile neutrino dark matter. However, the range of Lambda less than max[3mx,300GeV] shall be treated carefully.

CP conserving and violating

