

Multimessenger test of Hadronic model for Fermi Bubbles

Soebur Razzaque

University of Johannesburg

with Cecilia Lunardini and Lili Yang

Multi-messenger Astronomy

IceCube Cosmic Neutrino Events (3 year)

37 events, ~9-25 from atmospheric muon and neutrino background

Hint (~8% chance) of clustering near the Galactic center

 $\sim 15^{\circ}$ for cascades

 $\sim 1^{\circ}$ for tracks

A subset of events from Galactic Center region

2 year data (28 events)

SR, PRD88, 081302 (2013)

Cosmic Neutrinos and Fermi Bubbles

- 5 strongly correlated cascade events (central coordinate values within FB)
- 4 weakly correlated cascade events (error ellipses touching FB contours)

Gamma Ray Fermi Bubbles

Huge gamma-ray emitting globular-shaped objects

Credit: NASA Goddard Space Flight Center

Discovered by Finkbeiner et al. in Fermi-LAT data (2010)

Gamma Ray Fermi Bubbles

Uniform projected intensity, well-defined boundary, hard spectrum

- Top plots: residual maps using GALPROP templates
- Bottom plots: residual maps using local templates

Fermi-LAT Collaboration (2014)

FB from Galactic Center Starburst Activity

Hadronic model by Crocker & Aharonian 2011

 $t_{\rm pp} \approx (n_{\rm gas} \sigma_{\rm pp} \kappa_{\rm pp} c)^{-1} \sim 5 \times 10^9 \ {\rm yr}$

pp - interactions of cosmic rays in Fermi Bubbles

Cecilia Lunardini and SR, PRL108, 221102 (2012)

Injected proton spectrum

 $dN_p/dE \propto E^{-k}e^{-E/E_0}$

Gas density in bubbles: 0.01/cc

- Gamma-ray power ~ 2 x 10³⁷ erg/s
- Total energy in steady-state cosmic rays ~ 5 x 10⁵⁵ erg
- Total energy in gamma rays over
- ~ 5 x 10⁹ yr is ~ 3 x 10⁵⁴ erg
- Typical ~ 10% hadronic model efficiency for gamma-ray production

Comparison of data and model in energy bins

Cecilia Lunardini, SR, Lili Yang and Kristopher Theodoseau, PRD90, 023016 (2014) Cecilia Lunardini, SR and Lili Yang, arXiv:1412.6240

VHE Gamma and Neutrino Fluxes from FB

Test hadronic model using both neutrinos and VHE gamma rays

Cecilia Lunardini, SR and Lili Yang, PRD92, 021301 (2015)

High Altitude Water Cherenkov (HAWC) Detector

4100 m altitude near Sierra Negra Volcano, Puebla, Mexico

- * 0.1 100 TeV
- * 2pi sr Field of View
- * 0.1 degree @ > 5 TeV

4 meters high 7.3 meters in diameter

300 tanks in total, with 4 PMTs per tank

Detecting Fermi Bubbles with HAWC

HAWC field-of-view overlapping Fermi Bubbles at different times of day

- Overlap of HAWC field of view (magenta)
- Fermi Bubble contours (red)
- 5 IceCube events (blue)
- Measured diffuse gamma-ray flux regions by Fermi-LAT (grey)

Cecilia Lunardini, SR and Lili Yang, PRD92, 021301 (2015)

Detecting Fermi Bubbles with HAWC

HAWC effective area and averaged FB solid angle within FoV

D. Zaborov, HAWC Collaboration

Only a fraction of FB solid angle visible to HAWC in any given day (2-3 hours/day for North bubble)

interval of $\cos \theta$	$\langle f_\Omega angle$
[0.6, 0.7]	4.5×10^{-2}
[0.7, 0.8]	3.5×10^{-2}
[0.8, 0.9]	4.1×10^{-2}
[0.9, 1.0]	1.0×10^{-2}

Event rate in HAWC

$$N = \int_0^T dt \int_{\substack{\Sigma(t)\\\theta_1 \le \theta \le \theta_2}} d\Omega \int_{E_{\text{th}}}^\infty dE \Phi(E) A(E, \theta)$$
$$\simeq T \langle f_\Omega(\theta_1, \theta_2) \rangle \Omega_{FB} \int_{E_{\text{th}}}^\infty dE \Phi(E) \langle A(E) \rangle_\theta$$

VHE Gamma and Neutrino Events

Multimessenger signal from Fermi Bubbles

Cecilia Lunardini, SR and Lili Yang, PRD92, 021301 (2015)

VHE Gamma and Neutrino Events

Constraints on hadronic model for Fermi Bubbles

Cecilia Lunardini, SR and Lili Yang, PRD92, 021301 (2015)

Summary

Fermi Bubbles at the Galactic Center could be the first multi messenger source - VHE gamma rays and Neutrinos

- · 5-9 neutrino events are spatially correlated with FB
- Neutrinos follow gamma rays naturally in hadronic emission mechanism
- HAWC will be able to establish FB as VHE gamma and neutrino source or constrain the hadronic model of gamma-ray emission

Gamma Ray Fermi Bubble Spectra

Low-energy (< 200 GeV) Gamma-ray spectral models

Fermi-LAT Collaboration (2014)