Broadband Emission of Magnetar Wind Nebulae

Shuta Tanaka ICRR, The Univ. of Tokyo

29, Oct., 2015, TeVPA 2015 @ Kashiwa

Contents

1. Introduction

2. Spectral Evolution of young PWNe

3. A Spectral Model of MWNe

Pulsars in PWNe

3C58 (Chandra + VLA)

Pulse lumi. ~ a few % x L_{spin} Most of L_{spin} releases as pulsar wind! • ~ 50 of 2000 pulsars have observable PWNe. (L_{spin} > 10³⁶erg/s) Bow-shock PWNe are around MSP of L_{spin} < 10³⁶erg/s

 $L_{\rm spin} = I\Omega\dot{\Omega}$

How about other classes of pulsar?

Magnetar Wind Nebulae?

PWNe are found around High-B radio pulsar.

	\mathbf{PSR}	SNR?	$P[\mathbf{s}]$	$\dot{P}[\mathrm{s/s}]$	$B[{ m G}]$	$L_{ m spin}[m erg/s]$	$ au_{ m c}[m kyr]$	Extent	
MWN candidate	1E 1547.0-5408	G327.2-0.1	2.07	2.32×10^{-11}	$2.2 imes 10^{14}$	$1.0 imes 10^{35}$	1.4	$45^{\prime\prime}$	
	J1834.9-0846	W41 ?	2.482	8.06×10^{-12}	$1.4 imes 10^{14}$	$2.1 imes 10^{34}$	4.9	$70\times150^{\prime\prime}$	
	J1819-1458	_	4.26	5.76×10^{-13}	$5.0 imes10^{13}$	2.9×10^{32}	117	$\sim 13^{\prime\prime}$	
HBPs detected	J1846-0258	Kes 75	0.324	7.1×10^{-12}	4.8×10^{13}	8.3×10^{36}	0.7	40″	
actorica	J1119-6127	G292.2-0.5	0.408	4.02×10^{-12}	4.1×10^{13}	$2.3 imes 10^{36}$	1.7	$6 imes 15^{\prime\prime}$ Sat	fi-Harb1

One of young TeV PWN around high-B radio pulsar

Magnetar Wind

 Magnetars have large surface B-field (> 3x10¹⁴G) and some have L_x > L_{spin} B-powered emission?
 e.g., Thompson & Duncan 95

Even $L_x > L_{spin}$, wind angular momentum loss would dominate for magnetars from this simple estimate.

What We Learn from MWN

- PWN spectrum tells us spin evolution of pulsar
 How about MWN?
 - Does a millisecond magnetar exist? ^{e.g.)} Thompson & Duncan 1993 Rea et al. arXiv:1510.01430
- Difference of wind properties from rotation powered pulsar (RPP).
 - magnetization: σ ? pair multiplicity: κ ?
- Testing fall-back disk model of magnetar. e.g., Chatterjee+00
 Disk model does not produce MWN because no wind flows out from magnetosphere.

Contents

1. Introduction

2. Spectral Evolution of young PWNe

3. A Spectral Model of MWNe

Spectral Evolution Model

- PWN as uniform sphere
- Constant rate of Expansion applicable to young (<< 10kyr) PWN

$$R_{PWN} = V_{PWN} \times t$$

• Introduce a parameter η satisfies (no hadron)

$$L_{spin} = L_{e\pm} + L_{B} = (1-\eta) L_{spin} + \eta L_{spin}$$

B-field evolution as energy conservation

$$\int_{0}^{t} L_{\rm B}(t') dt' = \frac{4\pi}{3} R_{\rm PWN}^{3} \frac{B^{2}(t)}{8\pi}$$

Total magnetic energy injected Magnetic energy inside PWN

Spectral Evolution Model logN Injection of non-thermal e[±] plasma ∞**v**-p1 (broken power-law) ∞**v-p**2 $(1-\eta)L_{spin} = L_{e\pm} = \int Q_{inj} \gamma mc^2 d\gamma$ Ymax logy Ymin Yb Evolution of energy distribution of e[±] **Radiative &** Injection from pulsar adiabatic cooling $\frac{\partial}{\partial t}N(\gamma,t) + \frac{\partial}{\partial \gamma}\dot{\gamma}(\gamma,t)N(\gamma,t) = Q_{\rm inj}(\gamma,t)$ Calculate Syn. & IC spectral evolution

Most observed & studied object (one parameter η)

Model can reproduce observations

Young PWNe

Kumar & Safi-Harb08

- One-zone model is enough to get
 mean B-field inside PWN.
- spin-evolution of central pulsars
- predictions to γ -ray flux
- $\eta \sim 10^{-3}$ for all except for Kes 75

Contents

1. Introduction

2. Spectral Evolution of young PWNe

3. A Spectral Model of MWNe

Simplified One-zone Model

- Spin-down evolution
- Expansion of MWN
- B-field inside MWN

-1.2
$$\langle \alpha_R \langle$$
 -1.0, -5 $\langle \alpha_B \langle$ -3 from past studies
e.g., Gelfand+09, Tanaka&Takahara10, 11, 13, Bucciantini+1

 $L_{e^{\pm}}(t) \sim L_{\rm spin}(t)$

• e[±] injection

e[±] energy distribution

$$\frac{\partial}{\partial t}n(\gamma,t) + \frac{\partial}{\partial \gamma}\dot{\gamma}n(\gamma,t) = Q(\gamma,t)$$

adiabatic + synchrotron + inverse Compton coolings

Kes 75 Gavriil+08Sci Young RPP with magnetar-like activity -spin = 8x10³⁶erg/s, B_{NS} = 4.8x10¹³G, τ_c = 0.7kyr 10⁻⁹ 10⁻⁹ Kes 75 (Model 1) Kes 75 (Model 2) 10⁻¹⁰ 10⁻¹⁰ Fermi Fermi 10⁻¹¹ 10⁻¹¹ vF_v[ergs/cm²/sec] vF_v[ergs/cm²/sec] 10⁻¹² 10-12 SYN SYN 10⁻¹³ 10⁻¹³ IC/CMB ······ IC/CMB ······ IC/IR -----IC/IR -----IC/OPT -----IC/OPT -----10⁻¹⁴ 10⁻¹⁴ SSC ----SSC ----Total Total 10⁻¹⁵ 10⁻¹⁵ 10¹⁰ 10¹⁵ 10²⁰ 10²⁵ 10¹⁰ 10¹⁵ 10²⁰ 10²⁵ v[Hz] S.T.&Takahara 2011 v[Hz]

	model 1	model 2		
d	6kpc	10 .6kpc		
το	0.2kyr	Зуr		
E _{rot}	1.5x10 ⁴⁸ erg	2.1x10 ⁵⁰ erg		
B _{PWN}	20µG	24µG		
η	5×10 ⁻⁵	6×10 ⁻⁶		

AXP 1E1547.0-5408

Assuming $(u_{IR}, u_{opt}) = (1.0, 2.0) [eV/cc]$ L_{spin} = 1×10³⁵erg, B_{NS} = 2.2×10¹⁴G, τ_c = 1.4kyr

- Results are insensitive to α_B & α_R .
- X-ray upper limit gives constraints $B_{now} < 25 \mu G$.
- CTA would detect MWN around 1E1547.0 when B_{now} < 3 μG & u_{IR} > 1.0eV/cc <= larger value is expected
- $\eta << 10^{-3}$ is consistent with Kes 75.
- $P_0 < 100$ msec is presumed.

Summary

- Pulsar & Pulsar Wind Nebula
 - Most of L_{spin} lost by pulsar wind
 - σ & κ problem about physics of pulsar magnetosphere
 - One-zone model of PWNe tells us spin-evolution of central pulsars
- A Spectral model of MWNe
 - Angular momentum loss of magnetar => magnetar wind?
 - Deep obs. of 1E1547.0 by CTA can examine the hypothesis.
 - $\eta << 10^{-3}$ is consistent with High-B radio pulsars.
 - Constraint on P₀ is not strong < 100msec</p>
 - Detections of MWN in multi-wavelength are required to constrain magnetar evolution properties.