The CR-WIMP connection in the Galaxy

Carmelo Evoli (GSSI)

Tokyo | TeVPA 2015 | 29th of October 2015

The challenge!

Andromeda : a MW-like galaxy

The challenge!

Andromeda : a MW-like galaxy

The challenge!

Andromeda : a MW-like galaxy

The importance of being WIMP

The importance of being WIMP

The importance of being WIMP

Positrons

What about a sharply falling positron fraction?

Delahaye, Kotera and Silk,1404.7546

"One should also note that the flux coming from old pulsars drops more sharply, whatever the distance."

Astrophysical interpretation

flux to the electron flux. Therefore, a systematic search for anisotropies using the selected sample is performed from 16 to 350 GeV.

ti

Τ

C

ra

0

e f

p in ii

fı

S

e

2

b

Arrival directions of electrons and positrons are used to build a sky map in galactic coordinates, (b,l), containing the number of observed positrons and electrons. The fluctuations of the observed posiBiengstation et aldered BBB

using a spherical harmonic expansion Fact #2:

Spectral fit with positrons

Sharp sector feeting of exist, for leptonic channels, even after (even after propagation)

Let's do a spectral fit!

Spectral fit with positrons

Most stringent existinged in iteran (light) and eptonics sto

Spectral fit with positrons

represent i) local DI ii) local ra

> <u>NB</u>: t gives limits for sp

Most stringent existinged in its recompleter and the promies sto

Why antiprotons?

- we know the background with good accuracy
- in a democratic WIMP model the ratio between DM signal and background from standard astrophysical sources is usually much larger in the antiproton channel with respect to all other indirect detection methods.

Playing with anti-protons from DM

							dv_c/dz					Color
Model	z_t (kpc)	δ	$D_0(10^{28} \text{ cm}^2/\text{s})$	η	$v_A ~(\rm km/s)$	γ	(km/s/kpc)	$\chi^2_{B/C}$	χ^2_p	Φ (GV)	$\chi^2_{ar p}$	in Figs.
KRA	4	0.50	2.64	-0.39	14.2	2.35	0	0.6	0.47	0.67	0.59	Red
KOL	4	0.33	4.46	1.	36.	1.78/2.45	0	0.4	0.3	0.36	1.84	Blue
THN	0.5	0.50	0.31	-0.27	11.6	2.35	0	0.7	0.46	0.70	0.73	Green
THK	10	0.50	4.75	-0.15	14.1	2.35	0	0.7	0.55	0.69	0.62	Orange
CON	4	0.6	0.97	1.	38.1	1.62/2.35	50	0.4	0.53	0.21	1.32	Gray

Playing with anti-protons from DM

							dv_c/dz					Color
Model	z_t (kpc)	δ	$D_0(10^{28} \text{ cm}^2/\text{s})$	η	$v_A \ (\rm km/s)$	γ	(km/s/kpc)	$\chi^2_{B/C}$	χ^2_p	Φ (GV)	$\chi^2_{ar p}$	in Figs.
KRA	4	0.50	2.64	-0.39	14.2	2.35	0	0.6	0.47	0.67	0.59	Red
KOL	4	0.33	4.46	1.	36.	1.78/2.45	0	0.4	0.3	0.36	1.84	Blue
THN	0.5	0.50	0.31	-0.27	11.6	2.35	0	0.7	0.46	0.70	0.73	Green
THK	10	0.50	4.75	-0.15	14.1	2.35	0	0.7	0.55	0.69	0.62	Orange
CON	4	0.6	0.97	1.	38.1	1.62/2.35	50	0.4	0.53	0.21	1.32	Gray

Varying the halo size in the range 2 - 10 kpc

CE, I.Cholis, D.Grasso, L.Maccione & P.Ullio, PRD, 2012, 1108.0664

Much larger uncertainty in the DM fluxes!

The ratio of the local flux obtained considering sources with distance smaller than R_S to that obtained with $R_S = \infty$ (see also R. Taillet & D. Maurin, A&A, 2003)

Unavoidable uncertainties?

CE, I.Cholis, D.Grasso, L.Maccione & P.Ullio, PRD, 2012, 1108.0664

Changing diffusion conditions in the inner Galaxy gives significant effect on the DM contribution without affecting the local observables Only a comprehensive study including local and non-local observables may succeed in reducing safely the propagation uncertainties.

Bracketing the propagation uncertainties with PAMELA

Bracketing the propagation uncertainties with PAMELA

DM bounds after PAMELA data

CE, D.Gaggero & D.Grasso, 1504.05175

"The main difference in our approach is to make use of a broader analysis of the propagation and nuclear uncertainties in order to determine the background."

Testing the AMS-02 high-energy data

CE, D.Gaggero & D.Grasso, 1504.05175

Conclusions

- Whether or not **dark matter** contributes to the observed CR fluxes is one of the most important open problem in Cosmology.
- Indirect searches with charged CR have become competitive in terms of excluding candidates
- Astrophysical and nuclear uncertainties on the background predictions are comparable limiting factors at the moment
- Multi-Wavelength and multi-messenger studies in combination with more precise measurements are going to shrink the astrophysical uncertainties significantly (what about nuclear ones?)