Modelling the extragalactic flux distribution from dark matter

Michael R. Feyereisen In collaboration with S. Ando, S.K. Lee, I. Tamborra, *et al.*

GRavitation AstroParticle Physics Amsterdam

5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	5	5	5

4	2	6	5	7	1	3	9	8
8	5	7	2	9	3	1	4	6
1	3	9	4	6	8	2	7	5
9	7	1	3	8	5	6	2	4
5	4	3	7	2	6	8	1	9
6	8	2	1	4	9	7	5	3
7	9	4	6	3	2	5	8	1
2	6	5	8	1	4	9	3	7
3	1	8	9	5	7	4	6	2

Both of these photon count maps have the same mean intensity

But one clearly has more information!

• • = • • =

We should care about the probability distribution of intensities

1	2	0	1	0	1	1	0	2
1	1	2	0	2	1	0	1	0
1	0	1	2	3	1	2	1	4
0	1	0	0	0	2	1	2	0
0	2	1	0	0	1	1	1	1
2	1	0	1	1	1	0	3	0
1	3	0	0	1	1	2	0	1
2	0	2	1	4	0	0	0	0
1	1	2	0	1	2	1	1	2

Modelling the extragalactic flux distribution from dark matter

- Objective: Use the photon count distribution over many pixels as our observable.
 - This information is currently unexploited.
 - Inis "one point-function" is complementary to anisotropy!
- More precisely:
 - Model/predict the count distribution due to both DM annihilations and astrophysical backgrounds (this talk)
 - Output is to the experimentally observed distribution (future)
- Read all about it in

arXiv:1506.05118 MF, S. Ando, S.K. Lee

Observed Flux =
$$\sum_{\text{all halos}}$$
 Flux from one unresolved halo
Flux from one halo = $\iint_{L,z,\dots}$ horribleFn(unknown parameters)

But we want the Flux Distribution

$$P(F) = P_1(F) \star P_1(F) \star \dots \star P_1(F)$$

$$P_1(F) = \text{marginalise away uncertainties}$$

Modelling the extragalactic flux distribution from dark matter

▲圖▶ ▲臣▶ ▲臣

- Fermi telescope's angular resolution (\implies $N_{\rm pix}$)
- theoretically-motivated, simulation fitted mass function
- NFW profile with low-mass flattening of c(M, z)
- three substructure boost models:
 - conservative no boost
 - sensible fit to simulation, (Sánchez-Conde + Prada, 2014)
 - optimistic powerlaw (Gao et al., 2012)
- WIMP with thermal cross-section and $m_{\chi}=85~{
 m GeV}$

The mean DM intensity between 0.2% and 2% of the EGB (at 1 GeV) depending on optimism regarding substructure boost.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Flux distribution $P_1(F)$ of a single halo

Modelling the extragalactic flux distribution from dark matter

590

The method from arxiv:1506.05118 in one sentence

We use probability-theoretical arguments to justify a binomial expansion that 'divides and conquers' the problem.

Flux distribution P(F) of the entire background

Modelling the extragalactic flux distribution from dark matter

Qualitative Features:

- The distribution is *not a Gaussian*.
- **2** At high flux we reproduce the $F^{-2.5}$ 'tail' from $P_1(F)$.

A single bright source dominates the flux from the pixel.

O At low flux we have a roughly Gaussian peak.

This is characteristic of a diffuse background.

• The peak is much thinner than a Gaussian of equal (μ, σ)

- "1" = diffuse background of unresolved point sources
- "2 or more" = a single unresolved point source is as bright as everything else in that pixel
- Remember to add shot noise on top of this!

We modelled the γ EGB flux due to DM *distributionally*. Distribution's features have sensible interpretations Studied dependence on modelling choices (Boost, c(M), LSS, ...)

TODO: How does knowing P(F) affect DM search strategies?

Many indirect detection strategies, P(F) relevant for *all* of them!

$\mathsf{SKEWNESS} \implies \mathsf{The mean is NOT the most likely value.}$

Boost model	Mean	Most Likely	Ratio
No boost	1.0	1.0	
Fiducial	3.68	3.52	$\sim 5\%$
Optimistic	15.2	11.9	$\sim 25\%$

Table: Intensities at 1 GeV in units of $10^{-12}cm^{-2}s^{-1}sr^{-1}MeV^{-1}$

Existing limits are only weaker by a percent-level factor (just a correction, but it could have been MUCH more!)

For a Gaussian P(F), all info is contained in

- the mean (strategy 1)
- the variance (decompose into C_{ℓ} , strategy 3)

This is the case e.g. for CMB.

But, our P(F) is not a Gaussian

There is new information hidden in the higher moments too...

Complementarity!

Modelling the extragalactic flux distribution from dark matter

Strategy 3: Look at promising sources

- o diffuse DM background vs. DM sources
- thin peak \implies precise S/N
- DSphs Challenging, worse with more boost(!)
- Cluster S/N bad even without astrophysics

- ∢ ⊒ →

э

Compare the predicted P(F) to the experimental P(Counts)

We need to model the astrophysical backgrounds' P(F) too!

- Blazars contribute $15 \pm 1\%$ of the EGB flux at 1 GeV Extrapolate dN/dS to predict the blazar P(F).
- The remaining diffuse component has a Gaussian P(F) (improvements underway)
- Various P(F) combinations to get
 - a prediction for no DM signal (null hypothesis), and
 - predictions for various values of $\langle \sigma v \rangle$ (mock data)
 - χ^2 poorness-of-fit to forecast our statistical power.

・ 同 ト ・ ヨ ト ・ ヨ ト

Strategy 4: One-Point Function analysis

No energy spectrum in this analysis (yet!)

We're still *ignoring* most of the available data. Even then, our projections are already competitive with e.g. Fermi Dwarfs!

What we did

The probability distribution of DM halo fluxes was characterised:

- Single-source distribution and EGB contribution distribution.
- P(F) not just a Gaussian, but has a powerlaw tail.

Why it matters

- existing $\langle I_{\rm EGB} \rangle$ limits weakened by *only* a few percent.
- extragalactic diffuse background is an irreducible background for point searches; Galaxy clusters less promising than DSphs.
- one-point analysis can be competitive with other methods even *without* using energy spectra.

・ 同 ト ・ ヨ ト ・ ヨ ト