Testing the msec Pulsar Scenario of the Galactic Center γ-Ray Excess with Very High Energy γ-Rays

Qiang YUAN (UMass) Kunihito IOKA (KEK, Sokendai)

ApJ 802, I24 (2015) [I4II.4363]

The Graduate University for Advanced Studies

Sokendai

Testing MSP Scenario of GeV Excess with VHE gamma-rays by K. IOKA

Galactic Center

Testing MSP Scenario of GeV Excess with VHE gamma-rays by K. IOKA

Galactic Center

GeV y-ray Excess

Goodenough & Hooper 09 Vitale & Morselli 09 Hooper & Goodenough II Boyarsky+ 11 Hooper & Linden II Abazajian & Kaplinghat 12 Gordon & Macias 13 Huang+ 13 Abazajian+ 14 Daylan+ 14 Zhou+ 14 Calore+ 14 Bertone+ 15 ...

Caveat: Background model systematics is not small

GeV Excess Characteristic

Spherical (Axis ratio within 20%) ~30 GeV WIMP annihilation Flux~r^{-2.5} (gen NFW γ ~1.3) ~msec pulsar spectrum Extend to >1.5kpc (10°)

 $\sigma v ~(cm^3/s)$

2

Daylan+ 14;

20

30

 m_{X} (GeV)

Dark Matter v.s. Pulsar $\Omega \uparrow$ B Positrons Electron Intiprotons Supersymmetric neutralinos Protons Decay process $\rho_{\rm local} = 0.4 ~{\rm GeV/cm^3}$ bb 3 $s\overline{s}$ 2 uu,dd 10-26 5 $\Delta V \approx \frac{\Omega^2 B R^3}{2c^2} \sim 10^{14} \,\mathrm{V} \, \left(\frac{\Omega}{100 \,\mathrm{s}^{-1}}\right)^2 \left(\frac{B}{10^8 \,\mathrm{G}}\right) \left(\frac{R}{10^6 \,\mathrm{cm}}\right)^3$ $40^{\circ} x 40^{\circ}, \gamma = 1.18$ З Full Sky, $\gamma = 1.28$

50

40

60

Or cosmic-ray bursts? (Carlson & Profumo 14; Petrovic+ 2014; Cholis+ 15)

6yr Fermi Limits on DM

Testing MSP Scenario of GeV Excess with VHE gamma-rays by K. IOKA

8

y-ray Pulsars

Abdo+ 13

Testing MSP Scenario of GeV Excess with VHE gamma-rays by K. IOKA

Most Pulsars are Unseen

We are observing only nearby pulsars MSPs are faint Galactic center may have **O(10³⁻⁴)** MSPs \Rightarrow GeV excess?

Abazajian 11; Gordon & Macias 13; Yuan & Zhang 14; Petrovic+ 15; Bartels+ 15; Lee+ 15 Hooper+ 13; Cholis+ 15

▲ MSP; ● Radio-loud; ■ Radio-quiet

Testing MSP Scenario of GeV Excess with VHE gamma-rays by K. IOKA

Possible Origin of Pulsars

Pulsar Energy Budget Most spin-down energy ⇒ Pulsar wind (Relativistic plasma of magnetized e[±])

$$L_{e^{\pm}} \sim 10 L_{\gamma}$$

e[±] has ~TeV energy with power law spectrum via shock acceleration

Inverse Compton

In young pulsars Pulsar wind \Rightarrow Synchrotron emission

msec pulsars are old \Rightarrow Pulsar wind nebula becomes large \Rightarrow B becomes weak \Rightarrow Synchrotron is weak Kashiyama+ 11

⇒ e[±] escape to ISM
 ⇒ Inverse Compton

GALPROP

B=5µG Stellar photon density ~10 eV cm⁻³ ⇒ Inverse Compton >> Synchrotron

	Cosmic Ray	Yuan & KI		
	D_0 (10 ²⁸ cm ² s ⁻¹)	z_h (kpc)	v_A (km s ⁻¹)	δ
1	2.7	2	35.0	0.33
2	5.3	4	33.5	0.33
3	9.4	10	28.6	0.33

Note. The columns from left to right are the diffusion coefficient D_0 at the reference rigidity R = 4 GV, the height of the propagation halo z_h , the alfven speed v_A which characterizes the reacceleration, and the power-law index δ of the rigidity dependence of the diffusion coefficient.

Inverse Compton Spectrum

Inverse Compton Spectrum

Energy Dependence

More concentrated (More cooling) with increasing energy

Yuan & KI 15

Surface Brightness

Summary

GeV γ-ray excess

- Dark matter v.s. msec Pulsars

- Most energy ⇒ e[±] wind
- Inverse Compton
 - Extended TeV γ -rays
 - CTA! Bechtol's talk: Fermi already suggests IC 6-30× stronger than baseline models

Advertisement

Yutaka OHIRA (Aoyama Gakuin University)

- Cosmic-ray hardenings in the light of AMS-02
- Kazunori KOHRI (KEK)
 - Can we explain AMS-02 antiproton and positron excesses simultaneously?

• Norita KAWANAKA (U. Tokyo)

 Neutrino Flavor Ratios Modified by Cosmic Ray Secondary-acceleration

Thank You

Yuan & Ioka 2015 $L_{ m sd} = \gamma_w \dot{N}_{ m GJ} m_e c^2 \kappa (1 + \sigma) / f_{e^{\pm}},$ $\gamma_w = 4 \, imes \, 10^5 (f_{e^{\pm}} / \kappa_3) L_{ m 34}^{1/2},$

Table 1

Injection e^{\pm} Parameters: Injection Energy E_{inj} for the Monochromatic Case, Spectral Index α and Cutoff Energy E_{max} for the Power-law Case, and e^{\pm} Energy Fraction of the Spindown Power $f_{e^{\pm}}$

Spectrum	$E_{\rm inj}$	α	E_{\max}	$f_{e^{\pm}}$
	(GeV)		(GeV)	
$\overline{\delta(E-E_{ m inj})}$	200	•••		0.9 or 0.1
$\delta(E-E_{\rm inj})$	20			0.9 or 0.1
$E^{-\alpha} \exp\left(-E/E_{\max}\right)$		2.0	5×10^{4}	0.9 or 0.1

