Contribution ID: 38

Type: Poster presentation

Design and Alignment of Compact Optical Heads for Test Mass Readout with Deep-Frequency Modulation

Improving the low-frequency range (1 - 10 Hz) of ground-based detectors requires compact interferometric sensors with high displacement sensitivity and dynamic. We combine Deep frequency modulation and compact interferometric techniques to develop a sensor for local test mass readout. We introduce an optical head design with on-axis beam topology realized in a Quasi-Monolithic component (QMC) comprised of cube beam splitters, which ensures beam transmission through perpendicular surfaces to keep angular alignment constant when operated in air or vacuum. This On-axis beam propagation should enable sub-picometer level displacement sensing and nano-radian tilt sensing with a high displacement range. We implemented and investigated a table-top model of the QMC achieving high contrast values. The beam propagation and polarization effects in the QMC are analyzed and we present our current design for an integrated sensor.

Primary authors: MAHESH, Meenakshi; GERBERDING, Oliver (Universität Hamburg) **Session Classification:** Poster session III

Track Classification: Technical noises for low frequencies