

Discussion of experimental approach to go beyond the neutrino floor in the WIMP search

Tatsuhiro NAKA Toho University

2019.11.11-13 (talk on 11th) "Dark Matter Searches in the 2020s", U. of Tokyo

Dark Matter in our galaxy

Local dark matter density : 0.4 +- 0.1 GeV/cm³ Independent value on dark matter model Very much mount of DM is condensed in the halo because mean dark matter density in the universe is <u>~ 1.4 keV/cm³</u> (27 % of critical density ratio)

Dark matter flux on the earth ~ 100000 /cm²/sec @ 100 GeV/c² dark matter

Direct dark matter search !

kpc

WIMP dark matter interaction with target nuclei

Energy spectrum for coherent scattering

Neutrino coherent scattering

Neutrino coherent scattering is predicted in the standard model.

$$\frac{d\sigma}{dE_r} = \frac{G_F^2}{4\pi^2} (N - (1 - 4\sin^2\theta_W)Z)^2 m_N (1 - \frac{m_N E_r}{2E_v^2})\pi r^2 F^2(E_r)$$

 $\propto N^2$ N: number of neutrons Observation of COHERENT detector by Spallation neutron source (SNS)

@Oak Ridge National Laboratory

How can we distinguish the WIMP signal from CvNES backgrounds ?

Energy spectrum

Difference is very few

 \Rightarrow very large exposure is needed (> 10⁴ neutrino events)

□ Annual modulation

Standard DM model : Jun. is maximum, and Dec. is minimum

- Atom. Neutrino : June is max, and Dec. is min. on northern hem.
 ⇒ southern hem. Is opposite
- Solar neutrino : Jan. is max. and Jul. is minimum
 - \Rightarrow opposite to DM

Variation is few %, and high statistics + long time exp. are needed

Direction Information

Direction information has more than 100 times higher statistical gain.

Ev > 100 GeV from air shower IceCUBE arXiv:1909.02036v1

Advantage of direction information

Discovery potential

- Can be claimed with just several 10 events by angular distribution
- Diurnal modulation

Background Discrimination

- Clear difference with neutrino direction
- No background with angular bias to solar system motion

Dark matter astronomy

• Obtain the information about dark matter velocity distribution

"Direction" Information is very powerful !!

1.6667 - 3.3333 keV

Technical Difficulties

Now, there are no feasible detectors possible to do ton scale experiment immediately .

- New technical challenge ; Obtaining the direction information in nm scale
- Not ensured the scalability and stability (production, cost, quality) for such new technologies
- Low-background or understanding the background

Current methodology

Demonstrated

Idea or under demonstration

* Any other idea also exist

Current project using the detector already demonstrated direction sensitivity

Effort of Gaseous detector

Gaseous TPC

MWPC (DRIFT)

Gas pressure : ~ 0.1 atm ⇒ track length ~ 1 mm Readout : drifted electron and each readout technologies Target : C, F, S, He

	Readout	Target
DRIFT	MWPC	CS ₂ , CF ₄
NEWAGE	μΡΙϹ	CF_4 , SF_6
MIMAC	Micromegas	CF ₄ , C ₆ H ₁₀
D ³	ATRAS Pixel chips	He+CO ₂ , SF ₆

• 1m³ negative ion (CS₂:CF₄:O₂), 3D fiducialised, zero background

- · First result in "DAMA Region" with directionality

10

K Miuchi, TAUP2019

- CYGNUS collaboration : sharing the technologies and muti-site observation
- Large volume chamber : under construction 1-10 m³

CYGNUS collaboration simulated sensitivity

He+SF₆ 755+5

 \Rightarrow to be study to obtain direction information to such low energy signal

Effort of Solid detector

Super-fine grained (very high resolution) nuclear emulsion

Optical microscope readout system

Current scanning speed ~ 30g/y ⇒ Now, continue to develop toward 1 kg scale readout

Already demonstrated automatic readout to nuclear recoil and low-velocity ions

Current threshold ~ 60 keV@C recoil ($\Delta \Phi$ ~ 35 deg.)

Super-resolution tracking with localized surface plasmon (LSPR)

track length [nm]

Concept of NEWSdm experiment

<u>10 kg·year simulated sensitivity [90 % C.L.] + zero BG</u>

Toward neutrino floor

Simulation for NIT device intrinsic potential

✓ 10 ton production : special machine optimized this device is required (more simple system : current machine is over speck)

 \checkmark High scanning speed machine is needed (current highest machine in the nuclear emulsion field is 1 ton/y)

✓ under discussing whether light emission information from NIT 20

Anisotropic scintillator

ZnWO₄

W

Proposed by ADAMO Group in 2011

Reported 40-50 % anisotropy response for MeV alpha particle

0.041

ADAMO group

Reported α/β ratio of 55% anisotropic response

Eur. Phys. J. C (2013) 73:2276

- 1. Italian Group (ADAMO)
- 2. Japanese Group (Prof. Sekiya et al.)

perpendicular to (010): dir1 (001): dir2 (100): dir3

0.037

0.058

Demonstration for anisotropic response

α [deg.]	β [deg.]	γ [deg.]
90.0000	90.6210	90.0000
a[Å]	b[Å]	c[Å]
4.96060	5.71820	4.92690

単位格子の長さと角度

Direct detection of nuclear recoil due to neutron by TOF

~ 880keV monochromatic neutron test @ AIST (T(p,n) reaction)

Beam	//axis	Peak E _{visible} keVee	Quenching factor @151keV
1	b	22.67 ± 0.40	0.150 ± 0.003
2	a	19.50 ± 0.22	0.129 ± 0.002
3	b	22.73 ± 0.21	0.150 ± 0.002
4	a	19.65 ± 0.18	0.129 ± 0.002

H. Sekiya CYGNUS2019

Anisotropic scintillator [ZnWO₄]

H. Sekiya, JPS meeting 2017

Any other Idea and under R&D for demonstration of direction sensitivity

High pressure gaseous (Xe) detector + Columner recombination

Columner recombination

- Recombination efficiency of ionized electrons should have dependence on relative direction between track and electric field
- Time profile of scintillation emission (especially slow component) should be affected
- ⇒ Directional search is possible if this effect would be confirmed in low-energy nuclear recoil

K. Nakamura CYGNUS2019

8 atom Xe gus

Observed angular dependence due to Colamnur recombination

20 % difference @alpha particle (~²⁶MeV)

Diamond detector using N-V center effect

- ➤ To be demonstrated the feasibility to low-velocity atom (recoiled nuclei) ⇒ number of vacancy and density of nitrogen center are not clear yet for detecting of nuclear recoil
- Scalability (e.g., readout speed etc.) is not clear
- But, it's interesting idea.
- Surjeet Rajendran et al., Phys. Rev. D 96, 035009 (2017)
- Mason Marshall, CYGNUS2019

Discussion

- For current directional dark matter search, first motivation was search in DAMA anomaly region rather than neutrino floor. (this motivation is yet remained)
- Feasibility for going beyond neutrino floor (> 10 GeV/c2 mass and < 10⁻⁴⁵ cm² for SI WIMPnucleon cross section) is under discussion.
- > In parallel, discussion for new technologies and new methodology is very important in this field
- ⇒ Then, perhaps new collaboration may be needed with material science and phenomenology because obtaining the direction information for such low energy atomic recoil is new experience for particle physics.

Direction information can provide the most powerful evidence.

Conclusion

□ Standard WIMP scenario is attractive for thermal relic such as CMB, and energy scale.

□ several 10-100 GeV/c² dark matter will face the wall due to neutrino

Directional information is the most promising information to overcome that.

Now, some experimental groups are studying that about feasibility and further scale up + low-background

	Tracking or direction sensitivity	Scalability	Background
Gaseous detector	0	Δ	0
Nuclear emulsion	0	0	Δ
Anisotropic scintillator	0	0	Δ
Diamond	Δ	Δ	Δ
High pressure gas	Δ	Δ	Δ

 \bigcirc : Good and already demonstrated \bigcirc : Good or Conditionally good \triangle : Now on study or unknown