Varieties of DM density profile in Galactic dwarf spheroidal galaxies and the gamma-ray search of the annihilation signature

Nagisa Hiroshima iTHEMS, RIKEN

Contents:

1. Introduction

Why is it important to determine the DM density profile?

2. Method

What should we do to determine the DM density profile?

3. Outcomes

How does it affect the gamma-ray search of WIMP?

4. Conclusion

Introduction

Why is it important to determine the DM density profile?

WIMP:

- Weakly Interacting Massive Particle
 i.e., should feel the gravity
- · achieve the relic abundance via the
 - thermal freeze-out mechanism
- . the mass $m_{\rm DM} \sim \mathcal{O}({\rm GeV}) \mathcal{O}({\rm TeV})$
- · the annihilation cross-section

$$\langle \sigma v \rangle \sim \mathcal{O}(10^{-26} \mathrm{cm}^3 s^{-1})$$

We do not see the annihilation signature yet.

Indirect search:

DM + DM

somewhere in the Universe

something in the SM

https://www.nasa.gov/mission_pages/ station/images/index.html

around the Earth

Input & Output

 $\oint = \frac{1}{2} \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{m_{\rm DM}^2} \int dE \frac{dN}{dE} \int d\Omega \int_{los} ds \ \rho_{\rm DM}^2$ observable $\equiv \int \frac{dJ}{d\Omega} d\Omega = J_{\rm tot}$

Input: flux ϕ of the (stable) standard model particle

Output: model parameter

dSph:

- satellite of the Milky Way
- •~40 are confirmed
- do not show star formation activities
- $\cdot M/L \lesssim 10^3 M_{\odot}/L_{\odot}$
- $\cdot M \sim 10^{8-9} M_{\odot}$
- $\cdot \Delta \theta \lesssim \mathcal{O}(1 \text{deg})$
- dist(d) ~ $\mathcal{O}(100)$ kpc

Milky Way

~ 300kpc

 $\mathcal{O}(1 \text{kpc})$

O(100pc) **I** ~ 50kpc

 $M \sim 10^{12} M_{\odot}$

2. determine the model 2-1. models of (observed) spectrum It only depends on the particle physics. (We neglect the propagation effect.) 2-2. models of DM distribution

responsible for the observation

We need other astrophysical observations. 3. perform likelihood analysis

Procedure: model 1 model 2 $\oint = \frac{1}{2} \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{m_{\rm DM}^2} \int dE \frac{dN}{dE} \int d\Omega \int_{los} ds \rho_{\rm DM}^2$ observable 1. determine & observe the target 2. determine the model

2-1. models of (observed) spectrum It only depends on the particle physics.

(We neglect the propagation effect.) 2-2. models of DM distribution responsible for the observation

We need other astrophysical observations.

How can we know the profile $\rho_{\rm DM}$ of the invisible?

Method

What should we do to determine the DM density profile?

Stellar distribution ν_* :

DM distribution:

•(generalized) NFW

Power Law (PL) + exp.cutoff

$$\rho(r) = \rho_s \left(\frac{r}{r_s}\right) \quad \exp\left[-\frac{r}{r_s}\right]$$

Difficulties:

- dSphs are dark (but visible) in optical wavelength.
 - e.g. DES collaboration, 2015
- •We need precise spectroscopic observations. If not, we have to rely on the scaling relation.
- •We should remove the foreground contamination. e.g. lchikawa et al., 2017
- Many models for both of the stellar and DM
 - density distributions
 - For DM, we have NFW, Burkert, …

Current understanding:

24 Our work (Non-Spherical) Geringer-Sameth+ 2015 (Spherical) Bonnivard+ 2015 (Spherical) Achermann+ 2015 (Spherical) 22 Simon+ 2015 (Spherical) $\log_{10}[J_{0.5}]/(GeV^2 cm^{-5})$ 12 10 Pisu

Hayashi et al., 2016

Outcomes

How does it affect the gamma-ray search of WIMP?

We now have…

- varieties of models for DM distribution in
 - dSphs
- infinite number of models of DM
- annihilation spectrum from particle theories
- accessibility to the GeV-TeV γ -ray photons
- from DM annihilations with on-going (e.g. Fermi-LAT, MAGIC, HESS, …) and future experiments

WIMP search with γ -ray in 2020s:

WIMP search in dSphs with

- CTA
 - Our accessibility enhances by orders at $\mathcal{O}(1)$ TeV.
 - •dSphs are good targets of low-background and moderately high J-factor.
 - •The typical angular size of the dSphs are much
 - larger than the angular resolution of the CTA
 - facilities.

We should go beyond the $J_{\text{tot}} =$

$$d\Omega \frac{dJ}{d\Omega}$$

Test case: Draco dSph

- \cdot (RA, DEC) = (260.052,57.915)
- *d* ~ 80 kpc
- •# of stars ~ 1000

•radius of the outermost star $\theta_{\rm max} \sim 1.3 \ {\rm deg}$

•J ~ $\mathcal{O}(10^{19}) \text{ GeV}^2 \text{cm}^{-5}$

We collect 16 spherical models of $\rho_{\rm DM}$ for this dSph.

Spectrum:

25

Our accessibility:

Conclusion

Conclusion:

- •We can access TeV WIMP by taking indirect strategies.
- dSphs are good regions to see for gamma-ray
- experiments with high J-factor and low bkg.
- •The J-factor is derived using stellar kinematics data.
- The J-factor of some dSphs are determined in the
- accuracy of the factor, while only in the order for the
- others (especially for the newer dSphs).
- The spatial distribution as well as the its integral of the
- J-factor is important for future facilities.

							29