

CTA Dark Matter searches in dwarf galaxies, dark halos, and galaxy clusters

MORITZ HÜTTEN (MPP Munich)

On behalf of the CTA consortium, with input from J. Pérez-Romero, J. Coronado-Blázquez, A. Morselli, F. Saturni, and the dSph & cluster task-force groups

Symposium "Dark Matter Searches in the 2020s" Kashiwa, 13.11.2019

Annihilation
$$\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \sigma_{\mu\nu}^2 \sigma_{\mu\nu}^2$$

Flux searched for with γ -ray telescope $\langle \phi \rangle$

Annihilation $\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \,\mathrm{d}l \,\mathrm{d}\Omega$

Decay
$$\frac{\mathrm{d}\Phi^{\,\mathrm{dec.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \; \frac{1}{\tau_{\mathrm{DM}} m_{\chi}} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}} \rho_{\mathrm{DM}}$$

Secondary y-rays after annihilation/decay

Annihilation
$$\frac{\mathrm{d}\Phi_{\gamma}^{\mathrm{ann.}}}{\mathrm{d}E_{\gamma}} = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \times \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \times \int_{\Delta\Omega} \int_{l.o.s.} \rho_{\mathrm{DM}}^2 \sigma_{\mu\nu}^2 \sigma_{\mu\nu}^2$$

- What density targets do we need for CTA?
- Bright: close and/or massive DM budget
- 2. Localized ("point-like")
- 3. no astrophysical back-/foregrounds

Dark matter structures on all scales

Dark matter structures on all scales

Springel et al. (2005), Millenium simulations Gottlöber et al. (2010), CLUE simulations Diemand, Kuhlen, Madau (2006), Via Lactea simulations color code: brighter = denser

The dark matter y-ray sky from Earth

Galaxy clusters

- massive DM targets
- far away
- γ-ray backgrounds

Milky Way satellite galaxies

no background

- lower fluxes

Galactic center

strong signal γ-ray backgrounds **(Gabrijela's talk)**

Dark clumps

- no background
- ? brighter than satellites
- unknown position

γ-ray log(intensity) from DM annihilation, model HIGH from MH et al., 1606.04898

The dark matter y-ray sky from Earth

y-ray $\log(\text{intensity})$ from DM decay, model Phat-ELVIS from MH et al., 1904.10935

(movie)

Dwarf Spheroidal Galaxies (dSphs)

dSphs: y-rays from DM

J-factor values from 1504.02048

	Q J	$egin{array}{c} { m Log} \ J(oldsymbollpha_J) \ ({ m GeV^2 \ cm^{-5}}) \end{array}$				
Coma Berenices	0.20°	$19.2^{+0.6}$ -0.5				
rsa Minor	0.49°	$19.1^{+0.1}$ -0.1				
Draco	0.28°	$18.9^{+0.3}_{-0.1}$				
Ret II	0.08°	$18.7^{+0.6}$ -0.5				
Sculptor	0.38°	$18.6^{+0.1}$ -0.1				
Segue 1	???	???				

dSphs: CTA sensitivity to DM annihilation

dSphs: CTA sensitivity to DM annihilation

1709.07997 100 h, Stat. only 100 h, 0.3 % Syst. 100 h, 1 % Syst. 500 h, Stat. only ----- 500 h, 0.3 % Syst. 500 h. 1 % Syst. Galactic center 2 3 4 5 20 30 10 DM mass (TeV) 9

dSphs: More to be discovered in the future (Cta

Can't wait for LSST...

• Many DM clumps in the Milky DM halo too light ($m_{\rm DM} \lesssim 10^7 {\rm M}_{\odot}$) to trigger star formation:

"optically dark"

• Many DM clumps in the Milky DM halo too light ($m_{\rm DM} \lesssim 10^7 {\rm M}_{\odot}$) to trigger star formation:

"optically dark"

- ~ 33% of objects in γ-ray surveys (Fermi-LAT) unidentified: may have already found DM signal from subhalos? (1111.3514, 1111.2613, 1205.4825, 1504.02087,1601.06781, 1906.11896, ...)
 - Follow-up observation with CTA

How to find dark subhalos with CTA?

1. CTA extragalactic sky survey

- 1000h to raster ~ 25% of the sky outside the Galactic plane $(\sim 3h \text{ on-axis exposure on each point in the sky})$
- Complete within first 10 years of operation

How to find dark subhalos with CTA?

2. Serendipitous discovery in all CTA data (first 10 years, $\sim 2 \times 10^4$ h data)

J. Coronado-Blázquez, M. Sánchez-Conde, M. Doro, A. Aguirre-Santaella (in preparation)

CTA sensitivity to dark subhalos

J. Coronado-Blázquez, M. Sánchez-Conde, M. Doro, A. Aguirre-Santaella (in preparation),

see also 1606.04898

Galaxy clusters

The case of galaxy clusters

The case of galaxy clusters

Great attractor

Coma cluster

Virgo cluster

160 Mpc x 120 Mpc

Perseus cluster

Gottlöber et al. (2010)

• Biggest DM clumps in the Universe:

 $m_{\rm DM} \approx 10^{14} - 10^{15} {\rm M}_{\odot}$

However, ≥ 100 times more distant than dSphs and Galactic DM.

The case of galaxy clusters

- DM-annihilation y-ray fluxes comparable to dSph galaxies
- Emission profiles more extended (typical half-light radii $> 0.5^{\circ}$)
- Astrophysical backgrounds: \bullet
 - y-ray emitting galaxies (AGN, starforming galaxies, cosmic-ray interaction)
 - Also expect diffuse emission from the inter-cluster medium

CTA key science project: Observe Perseus galaxy cluster for 300h

Perseus cluster: DM annihilation signal

Perseus cluster: DM annihilation signal

Perseus cluster: DM decay signal

DM and astrophysical emission in clusters

Summary

- Probe various astrophysical regions for WIMP annihilation: Galactic center, dwarf galaxies, dark subhalos, galaxy clusters
- Unique sensitivity for $m_X \ge 1$ TeV WIMPs
- Complementary uncertainties in different targets: Detection: Galactic center, Identification: dwarf galaxies

•

 Crucial to control deep-exposure instrument systematics and J-factors for particle physics implications

cherenkov telescope array

Thank you for your attention

dSphs: CTA observation strategy

- First 3 years: Focus on best dwarf only
- Next 7 years: In case of strong signal at GC, use dSph to confirm signal in clean environment

Year	1	2	3	4	5	6	7	8	9	10
Galactic halo	175 h	175 h	175 h			-	1			
Best dSph	100 h	100 h	100 h	>	-	5. 2.7 5.		5. T. T. T.		-
	in case of detection at GC, large σv									
Best dSph				150 h	150 h	150 h	150 h	150 h	150 h	150 h
Galactic halo				100 h	100 h	100 h	100 h	100 h	100 h	100 h
		in case of detection at GC, small σv								
Galactic halo				100 h	100 h	100 h	100 h	100 h	100 h	100 h
		in case of no detection at GC								
Best Target				100 h	100 h	100 h	100 h	100 h	100 h	100 h

How to find dark subhalos with CTA?

3. Dedicated deep-exposure observation on dark field

- 1. Number of objects rises linearly with $\Delta \Omega$: geometry + isotropy
- 2. Number of detectable objects rises with $sqrt(T_{obs})$: instrument background
- 3. Number of detectable objects rises inversely with sensitivity threshold, $\sim 1/F_{sens}$: subhalo source count distribution
- For constant total observation time, number of detectable objects rises with $sqrt(\Delta \Omega)$

"Subhalo algebra": (details see 1606.04898)

How to find dark subhalos with CTA?

CTA sensitivity to dark subhalos

Dependent on many factors:

- Observation strategy ullet
- Total observation time ullet
- Search with CTA North or CTA South ullet
- Off-axis acceptance ullet
- Parallel vs. divergent pointing (1501.02586, 1508.06197) ullet
- Search region in the sky: other sources in the field of view ullet
- Expected DM subhalo population (1606.04898, 1904.10935, 1906.11896,...) ightarrow

Probe DM lifetime in galaxy clusters

- Huge integrated mass (up to $10^{15} M_{\odot}$)
- Probe $\tau_{\rm DM} > 10^{27} \, {\rm s} = 2 \cdot 10^9 \, t_{\rm Universe}$

MAGIC measured

Lower limit on DM lifetime from y-ray observation of Perseus cluster:

CTA expected

28