Improved search for Dark Matter annihilation with a combined analysis of data from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS: a framework for future DM analyses

> "Dark Matter searches in the 2020s" Symposium The University of Tokyo, Kashiwa Campus 11-13 November 2019

Daniel Kerszberg (IFAE-BIST), Céline Armand, Eric Charles, Mattia di Mauro, Chiara Giuri, J. Patrick Harding, Tjark Miener, Emmanuel Moulin, Louise Oakes, Vincent Poireau, Elisa Pueschel, Javier Rico, Lucia Rinchiuso, Daniel Salazar-Gallegos, Kirsen Tollefson, Benjamin Zitzer for the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations

Dwarf galaxies as target for DM search with gamma-ray instruments

Ideal for indirect dark matter searches:

- Among the most Dark Matter dominated objects
- Negligible expected astrophysical gamma-ray emission
- Already existing large data sets
- How to improve current results?
 - Accumulating more data
 - With current experiments
 - With next generation experiments
 - Combining data from existing experiments

 \rightarrow this technique allows to maximize the sensitivity to potential DM signal by increasing the statistics

The Glory Duck project

- Initiative by 5 gamma-ray experiments to combine their observations of dwarf galaxies:
 - Fermi-LAT
 - HAWC
 - H.E.S.S.
 - MAGIC
 - VERITAS
- How to combine these data sets?

The Glory Duck project

Daniel Kerszberg

Improved search for Dark Matter annihilation with a combined analysis of data from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS, Kashiwa Campus, 13th November 2019

Combining likelihoods

Improved search for Dark Matter annihilation with a combined analysis of data from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS, Kashiwa Campus, 13th November 2019

Combining likelihoods

Strategy for the combination:

- Each experiment computes the likelihood for each dwarf that it observed!
- These likelihoods follow this generic formula:

$$\mathscr{L}_{\gamma}(\langle \sigma \lor \rangle \bar{J}_{l}; \mu | D_{\gamma}) = \prod_{k=1}^{N_{meas}} \mathscr{L}_{\gamma,k}(\langle \sigma \lor \rangle \bar{J}_{l}; \mu_{k} | D_{\gamma,k})$$

- They are computed for a fixed J-factor. J-factor uncertainties are taken into account when combining the different observations of a same dwarf!
- These likelihoods are then shared for the combination

 \rightarrow a common approach to compute them is required

Recipe for a good combination

As many common ingredients as possible:

- Use the same values for J-factor and their statistical uncertainties (taken from A. Geringer-Sameth et al, Astrophys.J. 801, no.2, 74, 2015)
- Probe a common range of DM masses: 10 GeV to 100 TeV
- Use the same DM spectra
 - (taken from M. Cirelli et al, JCAP 1103:051, 2011)
- Define a common treatment for all relevant statistical and systematical uncertainties, in particular for Cherenkov telescopes
- Use finest analysis technique:
 - Binned likelihood
 - Extension of the dwarf if relevant
 - Use $\langle \sigma v \rangle$ >0 prescription
 - J-factor statistical error taken into account as nuisance parameter in the likelihood

List of targets

- In this project we use a list of 20 dwarf galaxies for which individual collaborations already published results
- In total, 40 data sets are combined!

Source name	Experiments
Boötes I	HAWC, VERITAS, Fermi-LAT
Canes Venatici I	Fermi-LAT
Canes Venatici II	Fermi-LAT, HAWC
Carina	HESS, Fermi-LAT
Coma Berenices	HAWC, HESS, Fermi-LAT
Draco	HAWC, Fermi-LAT
Fornax	H.E.S.S., Fermi-LAT
Hercules	HAWC, Fermi-LAT
Leo I	HAWC, Fermi-LAT
Leo II	HAWC, Fermi-LAT
Leo IV	HAWC, Fermi-LAT
Leo T	Fermi-LAT
Leo V	Fermi-LAT
Sculptor	H.E.S.S., Fermi-LAT
Segue I	MAGIC, VERITAS, HAWC, Fermi-LAT
Segue II	Fermi-LAT
Sextans	HAWC, Fermi-LAT
Ursa Major I	HAWC, Fermi-LAT
Ursa Major II	HAWC, MAGIC, Fermi-LAT
Ursa Minor	Fermi-LAT

Improved search for Dark Matter annihilation with a combined analysis of data from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS, Kashiwa Campus, 13th November 2019

Preliminary results

What to expect in 2020?

 Preliminary combined results from Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS ranging from 10 GeV to 100 TeV (already in 2019!)

 \rightarrow These preliminary results show that we can probe the thermal relic cross-section up to a few hundreds GeV

 Publication under preparation will include more channels (such as tt, ee, mumu, WW and ZZ) and potentially more targets

 \rightarrow will produce legacy results from the current generation of gamma-ray instruments for the search for annihilating DM towards dwarfs

What to expect in the 2020s?

- This approach could be extended for other targets such as galaxy clusters
- It could also be applied to other scenarios such as decaying Dark Matter
- New dwarf galaxies will be discovered by new surveys?
- CTA will gradually supersede the current IACTs (H.E.S.S., MAGIC and VERITAS) and will improve the current results by at least a factor 10 in their energy range
 - → Combination of results from CTA, Fermi-LAT and HAWC?
- Combination including other messengers such as neutrinos are possible
 → include IceCube and KM3NeT experiments in the combination?

Conclusion

- This analysis framework allow to perform multi-instruments and multi-targets analysis
- Preliminary combined results from 10 GeV to 100 TeV by Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS allow to probe the thermal relic cross-section up to a few hundreds GeV

• This framework can be extended to:

- Other (and currently built!) instruments
- Other observed targets
- Other messengers such as neutrinos

Thank you for your attention!