12 Nov. 2019 Dark Matter searches in the 2020s U. of Tokyo, Kashiwa

SUSY Dark Matter Searches at LHC and Future Colliders

K. Terashi ICEPP, University of Tokyo

Outline of the talk

- Neutralino dark matter in SUSY
- Collider search strategy for Neutralino dark matter
- Signatures for direct electroweakino production
- Compressed dark matter searches
- Current and future bounds on compressed scenario

SUSY Dark Matter

Lightest neutralino in MSSM most extensively studied as DM candidate

- Bino DM over-produced due to too low cross section
- ▶ If thermally produced, the pure Wino(Higgsino) DM mass below ~3(1) TeV

Neutralino DM - Status & Prospects -

- Pure Wino DM constrained by indirect detection (with astrophysical uncertainty)
- Strong constraint from direct detection on nearly pure Higgsino DM
- Direct detection/future lepton colliders more sensitive to Z/Higgs-pole regions

Neutralino DM - Status & Prospects -

Mixed Bino/Higgsino states also constrained by direct detection while sensitivity depends on the mass splitting δm = m(x˜₂⁰) − m(x˜₁⁰)
 What can collider do for mixed states (e.g, Bino-Wino, Bino-Higgsino) at δm ~ O(0.1-10) GeV?

Neutralino DM at Colliders

General search strategy for neutralino DM at LHC

Consider accompanying particles when looking for DM in SUSY **Production in gluino/squark decays** (if they are not too heavy)

 $m(\tilde{\chi}_1^0)$ excluded up to ~1 TeV for $m(\tilde{g})$ ~2 TeV

Under simplified model where only colored particles and DM are considered

Neutralino DM at Colliders

General search strategy for neutralino DM at LHC

Consider accompanying particles when looking for DM in SUSY
 Production in gluino/squark decays (if they are not too heavy)
 Direct production with weak iso-spin partners

Neutralino DM at Colliders

Search strategy for direct production with weak iso-spin partners Signature depends on compositions/masses of electroweakino states

- Decay mode: $\tilde{\chi}_1^{\pm} \to W^{\pm}/\pi^{\pm} + \tilde{\chi}_1^0 \quad \tilde{\chi}_2^0 \to Z/H + \tilde{\chi}_1^0$
- Mass splitting: $\Delta m_{\pm} = m(\tilde{\chi}_{1}^{\pm}) m(\tilde{\chi}_{1}^{0}) \quad \Delta m_{0} = m(\tilde{\chi}_{2}^{0}) m(\tilde{\chi}_{1}^{0})$

Search for Direct Production

Target in this talk : mixed states with Δm ~ O(1-10) GeV
high(low)-p_T leptons from on(off)-shell W/Z decay
ISR jet or VBF jets to boost DM system (trigger, reconstruction)
large E_T^{miss} (trigger)

Focus on compressed signature searches (not exhaustive) in this talk

Compressed Signatures (I)

Multi-leptons + ISR jet + E_T^{miss} for DY production

ATLAS-CONF-2019-014

- Iow-p_T leptons from off-shell W/Z
- Iarge E_T^{miss} (trigger) + ISR jet to boost DM system

2-leptons and 1-lepton+1-track (to recover lepton inefficiency at low p_T) Multiple signal regions to target signal with different E_T^{miss} and Δm values

Multi-Lepton Searches

Multi-Lepton Searches

Obs. limits worse or better than Exp. limits due to fluctuations in data
 1-lepton+1-track contributes to small Δm region, but only marginal
 Important to improve (very) low-p_T lepton tagging to go smaller Δm

Compressed Signatures (II)

JHEP 08 (2019) 150

Leptons + forward jets + E_T^{miss} for VBF production

- low- p_T lepton from off-shell W/Z
- ➡ large E_T^{miss} and H_T^{miss} (trigger) + VBF jets to boost DM system

Accessible to small *∆m* by boosting the DM system while suppressing BG using forward jets

0-lepton and 1-lepton (μ, e, τ_{had}) channels (leptons often too soft to be reconstructed)

VBF Topology Searches

Bino-Wino

- Sensitivity to $\tilde{\chi}_1^{\pm}$ with 100-150 GeV in the range 1< Δm_0 <10 GeV
- 0-lepton channel dominates sensitivity at small $\Delta m_0 \sim 1$ GeV
 - Good complementarity by the 0-, 1- and 2-lepton channels

No Higgsino interpretation for the VBF result... Bounds from disappearing track not shown here

Projections for future colliders (Lepton collider sensitive up to $\sqrt{s/2}$)

<u>HL/HE-LHC Yellow Report</u> <u>Physics Briefing Book (2020 ESU)</u>

∆m~1 GeV region to be filled with new techniques (→ See R. Sawada's talk for track-based approaches)

Compressed Searches - Option 1 -

- ▶ Bino-Wino ($\Delta m_0 \sim 10-40$ GeV) probed up to ~1.6 TeV at 100 TeV, 10 ab⁻¹
- Very little sensitivity from direct or indirect searches
- Unique advantage of future 100 TeV collider for compressed Bino-Wino scenario

Compressed Searches - Option 2 -

- ▶ Pure Higgsino (Δm_{\pm} ~350MeV) probed up to ~(130)500 GeV at 14(100) TeV
- Potentially no "blind spot" in this analysis? Good to demonstrate the performance with (HL-)LHC data!

Summary

- Neutralinos composed of Wino, Higgsino or mixed states are promising DM candidates
- Compressed spectra posing experimental challenge at hadron collider
- Several new ideas emerging to further constrain compressed states at hadron collider (→ More in R. Sawada's talk)

Summary

- Neutralinos composed of Wino, Higgsino or mixed states are promising DM candidates
- Compressed spectra posing experimental challenge at hadron collider
- Several new ideas emerging to further constrain compressed states at hadron collider (→ More in R. Sawada's talk)

Future prospects for Singlet-Doublet WIMP dark matter

- Strong constraints from direct & indirect detections
- HL-LHC sensitivity quite limited...
 Only on-shell W/Z analysis
 (p_T^{lepton}>50 GeV) available
 at that time

Could (near) future colliders enter into the game again?

Backup

