飛翔体観測(CALET)による 高エネルギー宇宙線加速天体の研究 ~CALET4年間の軌道上観測成果 研究代表者:鳥居祥二

早稲田大学理工学術院総合研究所 神奈川大学工学部

CALET

令和元年宇宙線研究所共同利用研究成果発表会 2019.12.13

共同利用研究概要(2019)

■ 共同研究内容

- ・ CALET観測最適化のためのシミュレーション計算及びデータ解析
- 発表概要
- CALET概要
- 観測現状
- ・ 観測データ解析
- ・まとめと展望
- 予算 旅費 200千円
 支出(予定)内容:研究打ち合わせ、小研究会
- ■共同利用 計算機(シミュレーション計算)

参加研究者及び研究補助										
早稲田大学	笠原克昌、	寺澤敏夫、	浅岡陽一、	Motz H	Martin					
宇宙線研究所	浅野勝晃			神	奈川大学	田村忠久,	清水雄輝			
横浜国立大学	片寄祐作			芝	浦工業大学	吉田健二				
立命館大学	森正樹			- 37.	前大学	市村雅一				
信州大学	宗像一起			茨	城大学	柳田昭平				
茨城高専	三宅晶子			CR	ESST/NASA/0	iSFC 赤池陽:	水			

CALET Payload

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket

Emplaced on JEM-EF port #9 on Aug. 25th, 2015 (JEM-EF: Japanese Experiment Module-Exposed Facility)

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry:

Medium 600 kbps (6.5GB/day) / Low 50 kbps

Observation by High Energy Trigger for 1480 days : Oct.13, 2015 – Oct. 31, 2019
 The exposure, SΩT, has reached to ~ 150 m² sr day for electron observations by continuous and stable operations.

□ Total number of triggered events is ~ 970 million with a live time fraction of about 84.0 %.

Accumulated observation time (live, dead)

Accumulated triggered event number

ICRR2019

All-Electron Spectrum Measured with CALET from 11 GeV to 4.8TeV

Future prospects: Search for new sources

- Investigation of CR nearby sources by electron observations at the TeV region
 - Direct detection of nearby sources
 - Acceleration limit and escape process from SNR
- Search for Dark Matter signature in the electron spectrum structure
 - Detection of unknown primary source of electron and positron: Pulsar(s) or Dark Matter ?

ICRR2019

Charge Identification with CHD and IMC

CHD charge resolution (2 layers combined) vs. Z

Charge resolution using multiple dE/dx measurements from the IMC scintillating fibers.

2019/12/13

Energy Measurement of Protons: Magnetic Spectrometer vs Calorimeter

Spectral Behavior of Proton Flux

Direct Measurements of Proton Spectrum before Sep. 2019

Recent paper by DAMPE collaboration (Sept 2019) from 40 GeV to 100 TeV:

- flux higher than AMS02 and CALET above 200 300 GeV
- flux higher than CREAM-III (and CREAM-I) in the region 1 TeV to 10 TeV approx.
- flux reduction above 13.6 TeV (spectral index changes from ~2.60 to ~2.85)

ICRR2019

Possible Connection of Proton Spectrum to Air Shower Observations

The shape of the cosmic ray proton spectrum

Paolo Lipari¹ and Silvia Vernetto²

¹INFN, Sezione Roma "Sapienza", Piazzale Aldo Moro 2, 00185 Roma, Italy ²OATO–INAF, INFN Sezione Torino, Via Pietro Giuria 1, 10124 Torino, Italy

4th November 2019

Flux measurements:

$$\Phi(E) = \frac{N(E)}{S\Omega\varepsilon(E)T\Delta E}$$

- N(E) : Events in unfolded energy bin
- SΩ : Geometrical acceptance
- $\varepsilon(E)$: Efficiency
- T : Live Time
- ΔE : Energy bin width

Observation period: Oct.13 2015 – Dec.31 2018

(1,176 days)

6.8 x 10 ⁶ events (C-Fe Δ E>10 GeV) [Y. Akaike et al., ICRC2019]

CALET Gamma-ray Sky (>1GeV)

Gamma-ray Sky Map

LE-γmode, from 2015 November to 2018 May

GW151226: O. Adriani et al. (CALET Collaboration), ApJL 829:L20 (2016). All O1 & O2: O. Adriani et al. (CALET Collaboration), ApJ 863 (2018) 160.

Event	Туре	Mode	Sum. LIGO prob.	Obs. time	Upper limits					
					Ene. Flux erg cm ⁻² s ⁻¹	Lum. erg s ⁻¹				
GW150914	BH-BH	Before operation								
GW151226	BH-BH	LE HXM SGM	15%	T ₀ -525 - T ₀ +211	9.3 x 10 ⁻⁸ 1.0 x 10 ⁻⁶ 1.8 x 10 ⁻⁶	2.3 x 10 ⁴⁸ 3-5 x 10 ⁴⁹				
GW170104	BH-BH	HE	30%	T ₀ -60 - T ₀ +60	6.4 x 10 ⁻⁶	6.2 x 10 ⁵⁰				
GW170608	BH-BH	HE	0%	T ₀ -60 - T ₀ +60	Out of FOV					
GW170814	BH-BH	HE	0%	T ₀ -60 - T ₀ +60	Out of FOV					
GW170817	NS-NS	HE	0%	T ₀ -60 - T ₀ +60	- T _o +60 Out of FOV					

- CALET can search for EM counterparts to LIGO/Virgo triggers
- All O1 and O2 triggers checked no signal in CGBM or CAL
- Upper limits set for GW151226 for CGBM+CAL in 2016 paper
- Upper limits for the CAL set using refined LE selection for triggers to-date in the 2018 paper

CALET: Summary and Future Prospects

- CALET was successfully launched on Aug. 19th, 2015. The observation campaign started on Oct. 13th, 2015. Excellent performance and remarkable stability of the instrument were confirmed.
- As of Oct. 31st, 2019, total observation time is 1480 days with live time fraction to total time close to 84%. Nearly 2.0 billion events collected with low (> 1 GeV) + high energy (> 10 GeV) triggers.
- Accurate calibrations have been performed with non-interacting p & He events + linearity in the energy measurements established up to 1 PeV.
- Following results have been obtained by now.
 - Measurement of electron + positron spectrum in 11 GeV- 4.8 TeV.
 - Direct measurement of proton spectrum in 50 GeV- 10 TeV energy range, spectral hardening observed above a few hundred GeV.
 - Preliminary analysis of primary elements up to Fe.
 - Study of diffuse and point sources of gamma-rays. Follow-up observations of GW events in X-ray and gamma-ray bands.
- □ After an initial period of 2 years, CALET observation time has been extended to 5.5 years at least.
 - *) This work is partially supported by JSPS KAKENHI Kiban(S) Grant Number 19H05608 (2019-2023). 2019/12/13

Publication List in FY 2017-2019 (refereed journal)

1. Relativistic electron precipitation at International Space Station: Space weather monitoring by Calorimetric Electron Telescope

R. Kataoka et al., Geophysical Research Letters, 43, 4119-4125 (2016)

- 2. CALET Upper Limits on X-ray and Gamma-ray Counterparts of GW 151226
 - O. Adriani et al., Astrophysical Journal Letters, 829, L20 (5pp) (2016)
- 3. Energy Calibration of CALET Onboard the International Space Station Y. Asaoka et al., *Astroparticle Physics*, 91, 1-10 (2017)
- Energy Spectrum of Cosmic-ray Electron + Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station
 O. Adriani et al., *Physical Review Letters*, 119, 181101 (2017)
- 5. Detection of the thermal component in GRB 160107A Y. Kawakubo et al., *Publications of the Astronomical Society of Japan*, 70, 6 (1-10) (2018)
- 6. On-orbit Operations and Offline Data Processing of CALET onboard the ISS Y. Asaoka et al., *Astroparticle Physics*, 100, 29-37 (2018)
- Extended measurement of cosmic-ray electron and positron spectrum from 11 GeV to 4.8 TeV with the calorimetric electron telescope on the International Space Station
 O. Adriani et al., *Physical Review Letters*, 120, 261102 (2018)
- 8. Search for GeV gamma-ray counterparts of gravitational wave events by CALET O. Adriani et al., *Astrophysical Journal*, 863, 160 (9pp) (2018)
- 9. Characteristics and Performance of the Calorimetric Electron Telescope (CALET) Calorimeter for Gamma-ray Observation

O. Adriani et al., Astrophysical Journal Supplement, 238, 5 (16pp) (2018)

- 10. Measurements of Heavy Cosmic-Ray Nuclei Spectra with CALET on the ISS Y. Akaike et al., *Journal of Physics: Conf. Series* 1181 (2019) 012042
- 11. Direct Measurement of the Cosmic-Ray Proton Spectrum from 50 GeV to 10 TeV with the Calorimetric Electron Telescope on the International Space Station

O. Adriani et al., *Physical Review Letters*, 122, 181102 (2019)