第24太陽活動期における太陽中性子の観測

名古屋大学宇宙地球環境研究所 松原豊

令和元年度共同利用研究成果発表会 令和元年12月13日 東京大学柏キャンパス

24 hour observingoperated since November 2003Gornergrat (スイス)、Mauna Kea (ハワイ)はすでに停止

わかってきたこと、わからないこと

太陽表面での粒子の加速機構は?

加速の効率は? 中性子の生成時間が電磁成分と同じ と仮定すると、統計加速。 仮定なしでは???

陽子の加速と電子の加速は異なるのか?

たとえば加速の継続時間は? 硬X線の生成時間と比べて中性子の 生成時間が長いケースが1回あった。 他は同時???

本共同研究課題の内容

乗鞍太陽中性子望遠鏡の保守と安定したエネルギー供給

認められた経費

旅費 34万円

経費の使用内訳

旅費

バッテリー充電、検出器チェック等に関わる旅費 乗鞍観測所は、7月-9月に開所 <u>3年続けて3か月通して開所してもらえた</u> (<u>夏の間ずっとAC100Vを利用できた!</u>)。

> 経費も、職員の方の尽力も どうもありがとうございました!!!

第24太陽活動期は大きなフレアが少ない

<太陽フレアの規模の積分分布 >

乗鞍64m²太陽中性子望遠鏡の稼働状況 令和元年8月8日の3分値

まとめ

本研究は、第24太陽活動期における太陽中性子観測拠点である 乗鞍太陽中性子望遠鏡を維持するものである。

令和元年度は、34万円査定していただきました。おかげさまで、 データ収集を継続できています。

夏休みなしで開所していただき、ありがとうございました。 来年度もよろしくお願いします!

*乗鞍での太陽中性子観測に ついては、あと2年続けさせて ください。

2018年8月12日から。これまでで最も太陽に近づく検出器群。 1-100 MeV までの陽子頻度(/min,多分)も記録 See nature this week

メキシコ・シェラネグラ (4,600m)で2013年9月より運転

April,2013 シンチレータバー 14,848 (各1.3cm×2.5cm×300 cm) 全体積 3m×3m×1.7m 輻射長 43 g/cm² 8XYを1ブロックとする8ブロック SciCRT (SciBar Cosmic Ray Telescope) 中性子8分の3とミューオンが稼働中

September, 2013

太陽中性子のエネルギースペクトルの決定

これまでで最も統計的に有意だった太陽中性子イベントと 同規模のイベントが起こった時、SciCRTの観測で、生成時間と べきが同時に決定できるか、シミュレーションを行った。 ⇒

エネルギースペクトルのべきの決定精度を±0.5としたとき、 中性子の瞬間的な生成と5分以上の継続生成を区別できる。 (Y. Sasai, PhD thesis 2017, Y. Sasai et al., Proc. in the 35th ICRC)

シミュレーションの例。 生成時間とスペクトルを仮定 した太陽中性子の SciCRT での測定。 Shibata model (大気中) PHITS (バックグラウンド) Particle and Heavy Ion Transport code GEANT (検出器)

Example of the energy spectrum of solar neutrons

10²⁴/MeV/sr

Data from neutron monitor Assumption: Neutrons are produced at the same time as electromagnetic radiations

figures from Watanabe et al.