ICRR Research Results Presentation Meeting of Inter-University Research Program

Nanolayered Coatings for Cryogenic Operation

Innocenzo M. Pinto

Fellow of the Optical Society of America

Tokyo, JP – December 13-14 2019

Outlook

- Nanolayers: the Titania Paradigm
- Nanolayered Silica/Titania Composites
 - Suppression of Annealing-Induced Crystalization
 - Suppression of Cryogenic Loss-Peak
- Nanolayered-composite Based HR Coatings
- Feasibility
- The USannio/UniSA Labs & their VCR&D Research Program
- Candidate Materials
- Questions and Simulations
 - Nanocomposite Modeling
 - HR Coating Modeling (QWL)
- Best Nanolayered-composite Based HR Designs
- Conclusions

The TiO₂ Paradigm

J. Szczyrbowski, Surf. Coat. Technol. 112 (1999) 261–266.

W.H. Wang & S. Chao, Opt. Lett., 23 (1998) 1417

SiO₂/TiO₂ Nanolayered Composites

A 75 layer nanocomposite film [38 x (TiO₂=1.8nm), 37 x (SiO₂=3.6nm)] remains amorphous after annealing at 600C, and its morphology is preserved

Mechanical Losses of SiO₂/TiO₂ Nanolayers

- The mechanical loss-angle of the [38 x (TiO₂=1.8nm), 37 x (SiO₂=3.6nm)] nanolayered film was reduced to $\approx 1 \cdot 10^{-4}$ after 600C annealing (a factor ≈ 9 lower than as deposited)
- No cryopeak is inherited from Silica.

Nanocomposite Based HR Coatings

Nanocomposite replacement for high-index coating layers

6

Feasibility

Nanolayers are routinely deposited to produce X-Ray Mirrors

Interference mirrors consisting of hundreds/thousands of nm scale layers, with sub - nm precision [see, e.g., Proc. 10th PXRMS Conf. (2008)], using

• Interleaved nm-scale "buffering" layers to prevent crystallization & maintain flatness [E. Gullikson, Proc. 8th PXRMS (2006)]

 Ion assisted (modulated) magnetron sputtering [N. Ghafoor et al., Thin Sol. Films 516 (2008) 982]

Control of stress, crystallite size, and roughness [D.L. Windt, Proc. SPIE (2007) vol 6688] Interleaved B₄C- Cr/Sc multilayer N=300 ∆=1.71 nm =0.32 100 nm

The USannio/UniSA Labs

University of Sannio Optical Film Deposition Lab

UniSA-SpNM Lab

- Up to 6 co-deposited materials;
- Dual e-beam (one installed);
- Plasma IAD;
- Fully programmable deposition with GUI;
- Accuracy/repeatability at the Å level;
- Annealing oven
- May accommodate up to 3-inch Ø dyes;
- Max annealing temperature : 900 ° C;
- · Fully programmable annealing schedule;
- PID feedback-controlled heater power supply with 0.05°C accuracy/stability;
- High-vacuum or controlled atmosphere (air, O₂, N₂, etc.)

The USannio/UniSA Coating Labs

Dept. of Physics "E.R. Caianiello", SpNM and CNR-SPIN Labs, University of Salerno

Zeiss LEO-EVO 50 (EDS-SEM); Zeiss Sigma Gemini (FE-SEM); Renishaw Invia (Raman); JPK Nanowizard 3 (AFM); Philips 'Xpert-Pro (XRD);

Candidate Materials

	n @ 1064nm	k @ 1064nm	Y [Gpa]	φ	ν
SiO ₂	1.4496 (1)	uncertain	72 (2)	5.0 ·10 ⁻⁵ (2,3)	0.17 (2)
Al ₂ O ₃	1.7545 (1)	uncertain	210 (2)	2.4 ·10 ⁻⁴ (2)	0.22 (2)
Ta ₂ O ₅	2.0760 (1)	uncertain	140 (2)	4.72 ·10 ⁻⁴ (3)	0.23 (2)
HfO ₂	2.0813 (1)	uncertain	380 (2)	5.9 ·10 ⁻⁴ (2)	0.2 (2)
ZrO ₂	2.1224 (1)	uncertain	200 (2)	2.3 ·10 ⁻⁴ (2)	0.27 (2)
Nb ₂ O ₅	2.2537 (1)	uncertain	68 (2)	4.6 ·10 ⁻⁴ (2)	0.20 (2)
TiO ₂	2.4789 (1)	uncertain	165 (3)	1.4 ·10 ⁻⁴ (3)	0.28 (2)

(1) https://refractiveindex.info/

(2) J. Franc et al., ET-021-09 (2009), arxiv/papers/0912/0912.0107.pdf; Flaminio et al., CQG 27 (2010) 083030

(3) M. Principe et al., Phys. Rev. D81 (2015) 022005, also Scott and MacKrone, Rev. Sci. Instr. 39 (1968) 821

More recent reviews of coating materials :

M. Granata et al., Phys. Rev. D93 (2016) 012007

G. Vajente, LIGO-G1900400

Questions and New Results

- Blind trial-and-error would be impractically time (and money) consuming.
 We implemented estensive simulations to provide guidelines to our experiments.
- Which materials are more promising to produce (binary) nanolayered films ? (Goals: noise reduction, cryo-compatibility)
- Which nanolayer *designs* are *more feasible* for a given material pair ?

[I. Pinto, LIGO-G1902307]

HR Coating Modeling (QWL)

Nanocomposite Modeling

• Assigning the effective index $n_{eff} \in (\tilde{n}_L, \tilde{n}_H)$ yields the ratio : $\frac{\delta_L}{\delta_H} = \left(\frac{\tilde{n}_H^2 - n_{eff}^2}{n_{eff}^2 - \tilde{n}_L^2}\right)$ (1)

• Prescribing the optical thickness z enforces the condition : $N(\delta_H + \delta_L) = z \frac{\lambda_0}{n_{eff}}$ (2) N being the total number of nanodoublets

Eqs (1) and (2) yield an infinity of alternative and equivalent designs (δ_L, δ_H, N) . Larger N corresponding to thinner nano layers. Minimum and maximum allowed thicknesses are set by deposition machine and by chosen material (crystallization).

13

Simulation Algorithm

SiO₂/TiO₂ Nanocomposite HR Coatings

Sample output of simulation code : Silica-Titania

QWL HR Coating – Silica (L) / Silica-Titania nanolayered composite (H)						
#of doublets	Silica Fraction	Effective index of	Coating power	Noise PSD		
in Coating	in nanocomposite	nanocomposite	transmittance	Reduction		
12	0.0882959	2.40581	5.25386	0.308983		
13	0.188226	2.32031	5.25386	0.322875		
14	0.269172	2.24867	5.25386	0.337020		
15	0.335952	2.1878	5.25386	0.351363		
16	0.391907	2.13547	5.25386	0.365862		
17	0.439421	2.09	5.25386	0.380487		

Code yields alternative nanocomposites, featuring

- different Silica/Titania (thickness) fractions
- different refractive index

to produce alternative HR coatings having the same reference transmittance, but

- different number of QWL doublets
- different noise PSD reduction factors

15

Selecting a Nanocomposite Design

$r_{L} = 0.0882959$	$r_t = 0.188226$	$r_{t} = 0.269172$	$r_{l} = 0.335952$	$r_l = 0.391907$	$r_{l} = 0.439421$
$(R_{PSD} = 0.30983)$	$(R_{PSD} = 0.322875)$	$(\tilde{R}_{PSD} = 0.33702)$	$(R_{PSD} = 0.351363)$	$(R_{PSD} = 0.365862)$	$(R_{PSD} = 0.3808437)$
	(100)				
$N = \delta_{\mu}[nm] = \delta_{\mu}[nm]$	$N = \delta_L[nm] = \delta_H[nm]$				
7 1.39464 14.4005	18 1.19879 5.17009	28 1.13717 3.08754	27 1.51282 2.99026	25 1.95268 3.02983	23 2.43158 3.10202
8 1.22031 12.6004	19 1.13570 4.89798	29 1.09796 2.98108	28 1.45879 2.88347	26 1.87758 2.91330	24 2.33026 2.97277
9 1.08472 11.2004	20 1.07891 4.65308	30 1.06136 2.88171	29 1.40848 2.78404	27 1.80804 2.80540	25 2.23705 2.85386
10 0.97625 10.0803	21 1.02754 4.43151	31 1.02713 2.78875	30 1.36153 2.69123	28 1.74347 2.70521	26 2.15101 2.74409
	22 0.98083 4.23008	32 0.99503 2.70160	31 1.31761 2.60442	29 1.68335 2.61192	27 2.07135 2.64246
1		1	32 1.27644 2.52303	30 1.62724 2.52486	28 1.99737 2.54809
<u> </u>	ΥΥ		33 1.23776 2.44658	31 1.57474 2.44341	29 1.92849 2.46022
			34 1.20135 2.37462	32 1.52553 2.36705	30 1.86421 2.37821
	T		35 1.16703 2.30677	33 1.47930 2.29533	31 1.80407 2.30150
			36 1.13461 2.24270	34 1.43580 2.22782	32 1.74770 2.22958
[37 1.10395 2.18208	35 1.39477 2.16416	33 1.69474 2.16201
Expected to crystallize before reaching $T_{ann} = 650C$		38 1.07490 2.12466	36 1.35603 2.10405	34 1.64489 2.09842	
· · · · · ·		S ann	39 1.04733 2.07018	37 1 31938 2 04718	35 1.59789 2.03847
			40 1.02115 2.01843	<mark>38 1.28466 1.99331</mark>	<mark>36 1.55351 1.98184</mark>
			41 0.996245 1.96920	39 1.25172 1.94220	37 1.51152 1.92828
			1	40 1.22043 1.89364	38 1.47175 1.87754
				41 1.19066 1.84746	39 1.43401 1.82940
				42 1.16231 1.80347	40 1.39816 1.78366
				43 1.13528 1.76153	41 1.36406 1.74016
				44 1.10948 1.72149	42 1.33158 1.69872
				45 1.08482 1.68324	43 1.30061 1.65922
		1		46 1.06124 1.64665	44 1.27105 1.62151
E	xpected to remain	amorphous at T_{ann}	, = 650C	47 1.03866 1.61161	45 1.24281 1.58548
				48 1.01702 1.57804	46 1.21579 1.55101
				49 0.996267 1.54583	47 1.18992 1.51801
					48 1.16513 1.48638
					49 1.14135 1.45605
					50 1.11853 1.42693
					51 1.09659 1.39895
					52 1.07551 1.37205
					53 1.05521 1.34616
					55 1.01684 1.29/21
					56 0.99868 1.27404

Select a design featuring smallest R_{PSD} and minimum N, subject to $\delta_L \ge 0.9 nm$, (feasible) and $\delta_H \le 2nm$ (remaining amorphous after 650C annealing)

Best Nanocomposite Based HR Designs

 $(\delta_L, \delta_H)^{N_N} [\delta_{SiO_2}, (\delta_L, \delta_H)^{N_N}]^{N_D}$

		Silica-Titania	Niobia-Titania	Zirconia-Titania	Alumina-Titania	Tantala-Titania
	$ au_{P}\left[ppm ight]$	5.25386	5.25386	5.25386	5.25386	5.25386
	R _{PSD}	0.36586	0.43352	0.464358	0.49998	0.57711
	N _D	16	12	13	14	13
	N _N	38	37	31	39	34
	δ_L [nm]	1.28466	1.00106	1.71587	1.07652	1.39840
	δ_{H} [nm]	1.99331	1.98720	1.98220	1.95661	1.97337
	δ_{SiO2} [nm]	183.499	183.499	183.499	183.499	183.499

[I. Pinto, LIGO-G1902307]

Reducing the noise PSD by a factor R_{PSD} yields an event rate boost by $(R_{PSD})^{-3/2}$

Robustness

Assumption: i.i.d. Gaussian thickness errors with 0 avg. and .3nm std. deviation on each layer. 1000 trial-depositions.

Nanocomposite Based HR Coatings, contd.

Nanocomposite replacement for low-index coating layers

Nanocomposite Based HR Coatings, contd.

Nanocomposite replacement for both low-index and high-index coating layers

Conclusions

• The nanolayered (binary) composites that may be used in place of the high index material in a QWL coating with the same τ_P as the reference Si/Ti::Ta2O5 design, to obtain $PSD \leq 0.5 PSD_{REF}$ are (best to worst)

 ${SiO_2, TiO_2}, {Nb_2O_5, TiO_2}, {ZrO_2, TiO_2}, {Al_2O_3, TiO_2}, {Ta_2O_5, TiO_2}$

- The best (lowest refractive index, lowest mechanical loss) nanolayered (binary) composite that may be used in place of the low index material is {SiO₂, Al₂O₃}.
- For each material-pair it is possible to select a nanolayer design that should be free from crystallization upon annealing up to 650C, and feasible/easy to deposit (not too many nanolayers, not too thin).
- Extensive numerical simulations have been implemented to identify the above optimal designs. These are now pipelined for deposition and characterization in our Labs, in the frame of the VCR&D.
- Thickness optimization of the above coating designs may be added, and is expected to provide some extra noise reduction.

21

Thank you so much for your attention

ご 清 聴 ありがとうございました

直接会えないことをお びします

