

Development of frequency dependent squeezed light source for KAGRA

Yao-Chin Huang

Supervisor: Ray-Kuang Lee Collaborators: <u>M. Leonardi</u>, E. Capocase, Y. Zhao, N. Aritomi (NAOJ); Chien-Ming Wu, Yi-Ru Chen, Hsun-Chun Wu, Popo Yang (NTHU)

Content

- Quantum noise in gravitational wave detector
- Frequency dependent squeezing experiment in NAOJ (located in Mitaka, Tokyo)
- Preliminary result on frequency dependent squeezing

Filter cavity of 300m in TAMA

Quantum Noise in Gravitational Wave

- Quantum noise limits the interferometer sensitivity
- Radiation pressure @ low frequency (e.g.: mirror motion)
- Shot noise @ high frequency
 - (e.g.: photon detector)

Quantum Noise in Gravitational Wave

- Quantum noise limits the interferometer sensitivity
- Radiation pressure @ low frequency (e.g.: mirror motion)
- Shot noise @ high frequency (e.g.: photon detector)

Broadband Quantum Noise Reduction

- We couldn't avoid quantum noise since coming from quantum nature of light, but we could reduce it.
- Frequency dependent Squeezing injection with various squeezing angles allowed broadband quantum noise reduction.

Squeezing Source Generation

Frequency independent squeezing

- Squeezed vacuum could be produced through nonlinear interaction process (optical parametric oscillation, OPO).
- Squeezing could be represented as the correlation between upper and lower sidebands.

Frequency(Hz)

Preliminary Result:

Frequency dependent squeezing

Filter cavity modified the phase relation between upper and lower sidebands.

(ttttttttttt

- Frequency dependent squeezing could be generated by reflected frequency independent squeezing off a detuned optical cavity.
- Measured the frequency dependent squeezing with filter cavity detuning of 2kHz.
 - Red curve showed that the anti-squeezing is rotated to squeezing.
 - Blue curve showed that the squeezing is rotated to anti-squeezing.

Summary

- We could generated 5.5dB of frequency independent squeezing, which is mainly limited by losses and phase noise.
- Some preliminary result about frequency dependent squeezing with filter cavity.

- Improve squeezing match to filter cavity to reduce injection loss.
- Improvement of filter cavity locking accuracy.
- > Toward frequency dependent squeezing in low audio-frequency.

Filter Cavity Design:

Cavity parameter	Design	Real value
Length	300 m	300 m
Mirror diameter	10 cm	$10~{ m cm}$
Input mirror radius of curvature	$415 \mathrm{m}$	$438 \mathrm{m}$
End mirror radius of curvature	$415 \mathrm{m}$	$445 \mathrm{m}$
Input mirror transmissivity (1064 nm)	0.14%	0.136%
End mirror transmissivity (1064 nm)	< 5 ppm	$3.9 \mathrm{ppm}$
Finesse (1064 nm)	4290	4425
Input mirror transmissivity (532 nm)	1.4%	0.7%
End mirror transmissivity (532 nm)	1.4%	2.9%
Finesse (532 nm)	445	172
Beam diameter at waist	$1.65~\mathrm{cm}$	$1.68~{\rm cm}$
Beam diameter at the mirrors	$2.06~{\rm cm}$	$2.01~{\rm cm}$

PRD 98, 022010 (2018)

Optical Bench Design:

