#### ガス飛跡検出器による暗黒物質探索実験 代表 身内賢太朗 (神戸大理) 平成30年度東京大学宇宙線研究所 共同利用研究成果発表会

@EARTH

miroTPC

@GALAXY

Direction Sensitive

NFWAGF

WIMP-search

"WIND" of WIMPs

竹内康雄 中村輝石 伊藤博士 橋本隆 池田智法 石浦宏尚(神戸大) 寄田浩平 田中雅士 鷲見貴生 木村眞人 矢口徹磨 飯島耕太郎 平良文香(早稲田大 Neil Spooner Warren A Lynch Callum Eldridge (University of Sheffield)

(New generation WIMP search with an advanced gaseous tracke experiment)

実験概要 2018年研究報告

## 1. NEWAGE 実験概要 Goal: 暗黒物質の風を検出 低圧力(CF<sub>4</sub> 0.05 気圧)・大質量(1m<sup>3</sup> × N)

## ◆ 現状: ● CF<sub>4</sub> 0.1 気圧・30cm角







→ 共同研究予算:25万円配分 (旅費15万+物品費10万) これまでに旅費で約15万円使用 3. 2018年研究報告 ◆ 地下中性子の測定(w/ 早稲田グループ) ◆ 地下中性子の測定 ← 高感度化(PTEP(2015)043F01s以降) ◆ 低α μ-PICを用いたDM run

> Direction Sensitive WIMP-search NEWAGE

#### PTEP掲載決定 ◆ 中性子測定 arXiv:1803.09757 • <sup>3</sup>He counter シミュレーション (Geant4+PHITS)で スペクトル形状にも言及

#### Measurement of ambient neutrons in an underground laboratory at Kamioka Observatory

Keita Mizukoshi<sup>1,\*</sup>, Ryosuke Taishaku<sup>2</sup>, Keishi Hosokawa<sup>3</sup>, Kazuyoshi Kobayashi<sup>4,5</sup>, Kentaro Miuchi<sup>2</sup>, Tatsuhiro Naka<sup>6,7</sup>, Atsushi Takeda<sup>4,5</sup>, Masashi Tanaka<sup>8</sup>, Yoshiki Wada<sup>9</sup>, Kohei Yorita<sup>10</sup>, and Sei Yoshida<sup>1,11</sup>



# ◆ µPIC、マイクロTPC "NEWAGE-0.3b" (2013年3月~) 0.1気圧 CF₄

大型GEM

31x31 cm<sup>2</sup>

μ-PIC

30x30 cm<sup>2</sup>

Drift Cage 41 cm PEEK

electronics

μ-ΤΡϹ

gas circulation system

## ガス検出器の特徴 原子核の飛跡検出(3次元) ガンマ線バックグラウンド排除

#### 



red : gas, with directional analysis blue : gas, without directional analysis green : solid, liquid detector Direction Sensitive WIMP-search NEWAGE

# ・高感度化へ Iow-α μ-PIC(LA-μPIC): 開発 ・低BG素材を使用 ・30cm角μ-PIC完成 ・性能評価:現行μ-PICと同等の性能





NEWAGE

## ◆ Underground run with LA µ-PIC ● 2018年6月~ DM run ● BG < ×1/10</li> ● 測定継続中 解析中



on Sensitive IMP-search **/AGE** 







# ◆ 高感度化へ ● 低α μ-PIC完成 地下測定順調 ● z方向のイベントカット原理実証 ● 大型化により、感度向上

Direction Sensitive WIMP-search NEWAGE



マイノリティーキャリア:速度の違う陰イオン

- DRIFTグループがMWPC-TPCでのZの絶対位置決定に成功
- <u>候補ガス</u>:CS<sub>2</sub>+O<sub>2</sub>有毒、爆発性 SF<sub>6</sub>安定 ガス増幅に問題

Physics of the Dark Universe 9-10(2015)1-7



#### NEWAGE-0.3b' 地下測定: 神岡RUN14 RUN14諸元

- period : 2013/7/20-8/11, 10/19-11/12
- live time : 31.6 days
- fiducial volume : 28x24x41cm<sup>3</sup>
- mass : 10.36g
- exposure : 0.327 kg days



#### RUN14結果(PTEP(2015) 043F01s)



red : gas, with directional analysis blue : gas, without directional analysis green : solid, liquid detector

### **NEWAGE-0.3b' detector**

- Aim >x10 improvement from previous measurement (PLB2010)
  - Large size:  $\sim 2$  (23 × 27 × 31 cm<sup>3</sup> => 30 × 30 × 41 cm<sup>3</sup>)
  - Low pressure (low threshold): 0.2 => 0.1atm (100 => 50keV)
  - Upgrade tracking algorithm (DAQ upgrade)
  - Gas circulation system with cooled charcoal



KOBE's activity μ-PIC in SF6
 tracking test (α-rays)
 ASIC development
 simulation (Garfield++)

Tomonori Ikeda





Liq argon electronics (LTARS2014) GEM (LCP 100um-thick)+ $\mu$ -PIC PIN photodiode for trigger detection volume  $1.28 \times 1.28 \times 16.1$  cm

anode(32ch) cathode(32ch) SF6 20 Torr

on Sensitive IMP-search VAGE

#### • 3D tracking + z-fiducialization (first!)

Tomonori Ikeda JPS Mar2018



paper in preparation

## U,Th含有量

|                   | [g]    | <sup>238</sup> U[10 <sup>-6</sup> × g/g] | <sup>232</sup> Th[10 <sup>-6</sup> ×g/g] |
|-------------------|--------|------------------------------------------|------------------------------------------|
| μ-ΡΙϹ             | 169.56 | $0.60 \pm 0.13$                          | $2.94 \pm 0.62$                          |
| ポリイミド 800μm       | 134    | $0.450 \pm 0.096$                        | $1.95 \pm 0.41$                          |
| ポリイミド 100μm       | 35     | $0.401 \pm 0.084$                        | $1.83 \pm 0.39$                          |
| CuSO <sub>4</sub> | 72     | <0.025                                   | <0.042                                   |
| GEM               | 27     | <0.022                                   | <0.100                                   |

- 先行研究より詳細な結果が得られた
  - 先行研究ではU,Thの合計量が得られていた (Uならば0.9[10<sup>-6</sup>×g/g],Thならば2.2[10<sup>-6</sup>×g/g])
- ポリイミドにU,Thが多く含まれている
  - 原因はおそらく補強材のガラス
- ポリイミド100μmの測定値を用いてシミュレー ションを行った
  - 下のポリイミド100 $\mu$ m,800 $\mu$ mからでた $\alpha$ 線は上の ポリイミドを抜けれない





白く見えるものがガラス繊維

## シミュレーション



- Geant4を用いてシミュレーション
- 上側のポリイミド100 $\mu$ m部分のオレンジのところからU,Th系列による  $\alpha$ 線を発生させる

## U,Th測定

 μ-PIC全体、ポリイミド100μm、ポリイミド800μm、メッキ液(CuSO<sub>4</sub>)、GEM に含まれているU,Thの量をHPGe検出器を用いて測定



ガラス繊維で強化されたポリイミド(左:800 $\mu$ m134g、右100 $\mu$ m35g)





### DAQ

 $\mu$ -PIC signals

 Energy Analog by FlashADC

<u>Track</u>
 Digital by FPGA





Upgrade FPGA of NEWAGE-0.3b' (30cm  $\mu$ -PIC) for mode5

#### **Gas circulation**

#### Purpose

- Low BG (radon reduction):<1/10
- Stability (impurity reduction):>1month





### Low threshold (low pressure)

- Pressure : 0.2atm => 0.1atm
- Angular resolution : ~40deg@50-100keV



Direction-sensitive energy threshold : 100 => 50keV

#### **Event selection 1**

length-cut (conventional gamma-ray cut)

dE/dx : nuclear (<sup>252</sup>Cf) > electron (<sup>137</sup>Cs) track length : electron > nuclear



#### **Event selection 2**

#### TOT-sum-cut (new gamma-ray cut)

- Nuclear (<sup>252</sup>Cf): TOT-sum is proportional to energy
- Electron (<sup>137</sup>Cs): scratched track (small dE/dx)



#### **Event selection 3**

#### roundness-cut (third cut)

Remained <sup>137</sup>Cs events : straight track shape



-5

10

15

20 z(cm)

Diffusion (drift distance) affects roundness ! (Almost all electron events are cut) (Remained events are BG  $\alpha$  from  $\mu$ -PIC) Roundness-cut works as "z-fiducial-cut"

### Efficiency

After all cut, compare to Geant4

- Nuclear (<sup>252</sup>Cf neutron source) Efficiency : 40%@50keV
- Electron (<sup>137</sup>Cs  $\gamma$  source) Rejection : 2.5 × 10<sup>-5</sup>@50-100keV





