

cherenkov telescope array

CTA report Daniel Mazin

Projects to be covered

No.	メール	所 属 機 関	部局名	研究代表者	研究課題	2019 Final (K Yen)		備考(事務) (メール番号)	採択課題可	
	畨号	Affiliation	Institute	Name	Title of the Research	Research Fee	Travel Fee	Total	2019/1/8/17:00締切	
E01	70	東京大学	宇宙線研究所	Teshima Masahiro	CTA Project		1.200	2.000	・ラパルマ ・大型計算機	可
E02	84	京都大学	基礎物理学研究 所	Ioka Kunihito	CTA-Japan Physics Research 0		250	250	·大型計算機	可
E03	18	甲南大学	理工学部	Yamamoto Tokonatsu	Development of Focal Plane Instruments for the CTA Large Sized		400	400	・ラパルマ	可
E04	97	京都大学	大学院理学研究 科 物理学第二教 室	Kubo Hidetoshi	Commissioning of the camera on the first LST of CTA		800	800	・E-97(1位) ・E-98(2位) - 理野夕杰田	可
E05	69	東京大学	宇宙線研究所	DANIEL MAZIN	nstallation and commissioning of the first .arge Size Telescope of CTA in La Palma, Canary Islands, Spain		500	500	• ラパルマ •様式3必要なし:CTA- 特定事業費	可
E06	2	東京大学	宇宙線研究所	DANIELA HADASCH	Set-up and Commissioning of the onsite data senter for CTA North in La Palma,Spain		0	400	• ラパルマ ・様式3必要なし∶研究所 研究員	可
E07	73	名古屋大学	宇宙地球環境研 究所	Tajima Hiroyasu	Development of camera for CTA small-sized 300 150		450	·大型計算機	可	
E08	96	東京大学	宇宙線研究所	Ohishi Michiko	CTA Monte Carlo Simulation		200	200	·大型計算機	可
E09	45	東海大学	理学部	Nishijima Kyoshi	_ocalization of very high energy gamma-ray emission region in an active galattic nuclei 0 400 40		400	・ラパルマ	可	
E10	98	京都大学	大学院理学研究 科 物理学第二教 室	Kubo Hidetoshi	Stady of High Energy Gamma-ray Objects with the MAGIC telescope 0 500 500 500 ・ラパル ・ラパル		・ラパルマ ・E-97(1位) ・E-98(2位)	可		
E11	112	東京大学	宇宙線研究所	Saito Takayuki	Early phase observations with CTA Large Sized Telescope		500	500	• ラパルマ •様式3必要なし:CTA- 特定事業費	可

Kyodou Riyou report December 2019 2

Introduction: perspective

Key Science Topics

Sketch by R. Ong

CTA Consortium

Kyodou Riyou report December 2019 5

Daniel Mazin

CTA telescope prototypes

Kyodou Riyou report December 2019 7

CTA telescope prototypes

Kyodou Riyou report December 2019 8

Motivation

- LST is optimised for
 - low energy gamma rays (increasing accessible volume of the universe)
 - rapid slewing speed (for transients like GRBs)
- SST is optimized for very high energies: Cosmic Rays and PeVatrons!

Picture from LST meeting, 2018

LST sub-consortium

mit Baka

LST1 status

體

Commissioning Power system

Energy storage and the central UPS

Daniel Mazin

Commissioning Power system

- Robust monitoring needed for a stable operation of LST1, but also for UC2-4 maintenance
- Improved recently (last week!) for the monitoring UC2-4

Commissioning Power system

Drive system

Daniel Mazin

Kyodo

- Stable operation with Look-Up Table mode, by an operator-friendly GUI
- PSF within one PMT pixel, close to the requirement. The precision CMOS mode to be implemented
- See Noda talk for details

E04 Camera Commissioning

Photomultiplier

DRS4 Frontend Switching regulators/ (analog Amplifier memory) Linear regulators ADC FPGA PACTA board 136mm HV power supply (3 PCBs) (2 PCBs) Figure 2.55 – Photo illustrating the arrangement of the PMT power supply electronics and PACTA boards. Assembled module DRS4 readout 350mm Slow-Control PMT Backplane Board side side **Analogue Trigger Backplanes** 7 PMTs Light Guide Light guides

Daniel Mazin

E04 Camera Commissioning

Electronics noise level

- Noise level
 - 5.9 ADC (0.20p.e.) due to electronics noise
 - 29.5 ADC (0.98p.e.) with HV on in dark patch (dominated by NSB)
- Time accuracy at 400ps level
- Can handle data rates according to specs

E04 Camera Commissioning

- Camera charge flatfielding (same light intensity produces same signal strength in readout channel) successful and is stable over months
- The readout has two gains high gain (HG) and low gain (LG) to increase dynamical range. X-calibration between the HG and LG is achieved on a level of 1% agreement

Daniel Mazin

E06 IT centre

Onsite IT center Recent activities

Daniel Mazin

- Re-organization of network structure
- Back-up server (RAID10 System) with 100TB installed at CALP
 - Backup of sensitive data offsite
- Erroneous cooling and fire alarm system fixed

E11 Early phase observations with LST1

Ongoing cross-calibration between MAGIC and LST1

Core position of coincidence events

Daniel Mazin

Comparison of image intensity of the coincidence events

E11 Early phase observations with LST1

E < 100 GeV

100 GeV < E < 200 GeV

1 TeV < E < 2 TeV

alpha cut = 6deg

- Source dependent analysis
- Appropriate for known point like sources
- Clear detection of the Crab Nebula first time we pointed to it!

Kyodou Riyou report December 2019 25

LST2-4

ID		Duration	Start	Finish	2018 2019	2020	2021	2022	2023
	Task Name	0.1	01.00.10	01 00 10	<u>Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3</u>	<u> Qtr 4 Qtr 1 Qtr 2 Qtr 3 Q</u>	<u>)tr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4</u>	Qtr 1Qtr 2Qtr 3Qtr	<u>r 4 Qtr 1 Qtr 2 (</u>
	Sign Contract for Short Project	0 days	01.08.19	01.08.19	•				
2	Basic project ready for submission	0 days	08.11.19	08.11.19		• 08.11			
3	All Permissions granted	0 days	15.06.20	15.06.20		♦ 15.0	06		
4	Sign civil work contract	0 days	13.07.20	13.07.20		♦ 13	.07		
5	Civil Works start	0 days	21.08.20	21.08.20		• 2	21.08		
6	LST2 construction starts	0 days	18.02.21	18.02.21			18.02		
7	LST3 construction starts	0 days	18.03.21	18.03.21			18.03		
8	LST4 construction starts	0 days	15.04.21	15.04.21			♦ 15.04		
9	LST2 construction completed	0 days	19.04.22	19.04.22				19.04	
10	LST3 construction completed	0 days	15.09.22	15.09.22				1	15.09
11	LST4 construction completed	0 days	27.12.22	27.12.22					27.12
12	LST2 ready for acceptance	0 days	16.12.22	16.12.22					16.12
13	LST3 ready for acceptance	0 days	16.05.23	16.05.23					•
14	LST4 ready for acceptance	0 days	25.08.23	25.08.23					
15	Project and Permissions LST2-4	788 days	18.07.17	23.07.20					
44	Civil Works	180 days	21.08.20	29.04.21					
49	Removal of LST1 assembly platform	100 days	23.07.21	09.12.21					
53	Optics	935 days	02.05.16	29.11.19					
58	Mechanics	865 days	21.05.18	10.09.21					
190	Camera	1697 day	02.05.16	01.11.22					
236	Installation	503 days	22.01.21	27.12.22					
264	AIV (commissioning)	343 days	04.05.22	25.08.23					

- LST 2-4 construction finished by 2022
- LST 2-4 commissioning finished by 2023

Daniel Mazin

Nagoya group is in charge of SiPM and software for the Compact High Energy Camera (CHEC)

- CHEC prototype with SiPM was installed on the ASTRI-Horn telescope (one of SST telescope designs) in April
- Successfully captured air-shower images

*****ASTRI/CHEC was chosen as an SST baseline design

Credit: Jason Watson (Oxford/MPIK)

Gamma-ray Cherenkov Telescope

Nagoya group is exploring a possibility to employ SiPM for MST

- Cost per area was a critical issue for SiPM in MST since total photon sensor area is ~27 m² (SST photon sensor area is 6 m²)
 - Now SiPM cost is comparable with 1 inch PMT used in MST
- Integrated light yield (LY) over Cherenkov spectrum of SiPM with light concentrator needs to be verified
 - Integrated light yield for Cherenkov signal is similar between SiPM and PMT with a proper filter to cut off NSB peaks above 550 nm
 - NSB light yield is ~10% less (better) for SiPM
 - SiPM is a viable solution for MST camera

EO8: CTAモンテカルロシミュレーション (CTA Monte Carlo Simulation)

Amount of approved budget

Equipment	Domestic Travel
0 k yen	200 k yen (20万円)

Purpose :

Domestic travel money for the participants of F2F meeting, held on 2019-05-27 @ Kashiwa

- Annual event mainly targeting newcomers
- Joint host with ODA (Onsite Data Analysis, E11) group this year
- 22 participants from 6 institutes
- Includes introductory courses for beginners
 - Usage of ICRR computer system, review of recent analysis methods, etc..
 - One day was not enough to cover all the topics

ご支援ありがとうございます Thank you for your supports

Topics CTA-Japan ASWG covers

- AS \rightarrow "Analysis and Simulations", here Simulations \approx air shower MC
- Recently some (many) of items are overlapped with ODA
 - Muon ring analysis with LST (MC and real data)
 - LST mono analysis (MC and real data)
 - Deep Learning and other Machine Learning techniques (MC)
 - Evaluation of SiPM performance (MC)
 - Investigating influence of the uncertainty of hadronic interaction on the CTA IRF (MC)
 -and more topics...

Effect of uncertainty in hadronic interaction Ohishi+, TAUP2019

望遠鏡の集光率は、ミューオンイメージの明るさによりモニターできる。1つ のミューオンリングにより7%程度の精度。数分程度の観測により1%以下の 精度で系統誤差を測定できる。

μ analysis with CTA-LST Yamamoto+, JPS meeting (2019 Sp.)

MAGIC project

Daniel Mazin

Radio galaxies: M87

Localization of very high energy gamma-ray emission region in an active galactic nuclei (E09)

- M87 : 2019/1/19 6/20(24 nights including 19 moon nights)
 - Excess : 4.9σ (> 200 GeV, 32.4 hrs)
 - Average integral flux(>300 GeV) : (1.2±0.3)×10-13 ph cm-2s-1
 - Light curve

Daniel Mazin

- K. Nishijima, J. Kushida, S. Tsujimoto,
 T. Ogata, T. Furuta, Y. Nabatame, Y.
 Harada (Tokai University)
- M. Teshima, D. Mazin (ICRR, University of Tokyo)

Localization of very high energy gamma-ray emission region in an active galactic nuclei (E09)

- Ton396, BL Lac, 0.101 < z < 0.36
- 12 out of 16 CLASS (radio survey) High peaked BI Lacs have been established in TeV
- $\cdot\,$ Ton 396 is one of the missing 4. Let's check it!
- 2016/12/28 2017/1/29 (11 nights, 11.9 hours after cuts)
- MaTaJu image cleaning to achieve lowest possible threshold

MaTaJu cleaning

Daniel Mazin

Pulsars:

• Accepted in MNRAS, arXiv:1911.00634v1

Kyodou Riyou report December 2019 36

Gamma-ray binaries

Kyodou Riyou report December 2019 37

First VHE-y detection of GRB: 190114C

- Bright long GRB by Swift-BAT
- MAGIC observed from 50 s (not the fastest but well within T₉₀)
- zenith angle ~55 deg, moderate moon => Eth = ~300 GeV
- z=0.42: 3rd closest in MAGIC
- >20 sigma online, >50 sigma offline = First clear detection of a GRB in the VHE regime
- 2 papers in Nature Main contributors from Japan: Inoue, Noda, Fukami, Vovk,,,

ATel #12390 (and also GCN #23701)

[Previous | Next | ADS]

First time detection of a GRB at sub-TeV energies; MAGIC detects the GRB 190114C

ATel #12390; *Razmik Mirzoyan on behalf of the MAGIC Collaboration* on 15 Jan 2019; 01:03 UT Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

Subjects: Gamma Ray, >GeV, TeV, VHE, Request for Observations, Gamma-Ray Burst

Referred to by ATel #: 12395, 12475

The MAGIC telescopes performed a rapid follow-up observation of GRB 190114C (Gropp et al., GCN 23688; Tyurina et al., GCN 23690, de Ugarte Postigo et al., GCN 23692, Lipunov et al. GCN 23693, Selsing et al. GCN 23695). This observation was triggered by the Swift-BAT alert; we started observing at about 50s after Swift T0: 20:57:03.19. The MAGIC real-time analysis shows a significance >20 sigma in the first 20 min of observations (starting at T0+50s) for energies >300GeV. The relatively high detection threshold is due to the large zenith angle of observations (>60 degrees) and the presence of partial Moon. Given the brightness of the event, MAGIC will continue the observation of GRB 190114C until it is observable tonight and also in the next days. We strongly encourage follow-up observations by other instruments. The MAGIC contact persons for these observations are R. Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) and K. Noda (nodak@icrr.u-tokyo.ac.jp). MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Observatory Roque de los Muchachos on the Canary island La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to greater than 50 TeV.

"Discovery" paper: MAGIC Collaboration, "Teraelectronvolt emission from the γ-ray burst GRB 190114C", Nature **575** 455 (2019): **"MWL" paper:** MAGIC Collaboration, Fermi, Swift,,, (>20 instruments), "Observation of inverse Compton emission from a long γ-ray burst", Nature **575** 459 (2019)

Smooth DAQ, brightest VHE source ever, monotonic decay

PWL (index -2.2) extended to 1 TeV, clear evidence beyond synchrotron

"MWL" paper (Fukami, (Suda),,,)

More to come

- GRB 190114C: LIV, EBL, IGMF,,,
- GRB 160821B
- MAGIC GRB catalog

Large Aeff of IACT dominates. Modelling consistent with SSC

MAGIC Publications in the last year

[1] "A fast, very-high-energy γ-ray flare from BL Lacertae during a period of multi-wavelength activity in June 2015"
 Astronomy and Astrophysics,623,A175; DOI: 10.1051/0004-6361/201834010

[2] "Discovery of TeV γ-ray emission from the neighbourhood of the supernova remnant G24.7+0.6 by MAGIC"
 Monthly Notices of the Royal Astronomical Society,483,4578;
 DOI:10.1093/mnras/sty3387

[3] "Deep observations of the globular cluster M15 with the MAGIC telescopes"

Monthly Notices of the Royal Astronomical Society,484,2876; DOI:10.1093/mnras/stz179

[4] "MAGIC and Fermi-LAT gamma-ray results on unassociated HAWC sources"

MAGIC and Fermi-Lat Collaborations,

Monthly Notices of the Royal Astronomical Society,485,356; DOI:10.1093/mnras/stz089

[5] "Measurement of the extragalactic background light using MAGIC and

Fermi-LAT gamma-ray observations of blazars up to z = 1" Monthly Notices of the Royal Astronomical Society,486,4233; DOI:10.1093/mnras/stz943 [6] "Constraints on Gamma-Ray and Neutrino Emission from NGC 1068 with

the MAGIC Telescopes"

The Astrophysical Journal,883,135; DOI:10.3847/1538-4357/ab3a51

[7] "Teraelectronvolt emission from the γ-ray burst GRB 190114C" Nature,575,455; DOI:10.1038/s41586-019-1750-x

[8] "Observation of inverse Compton emission from a long γ-ray burst" Nature,575,459; DOI:10.1038/s41586-019-1754-6

 [9] "Testing emission models on the extreme blazar 2WHSP J073326.7+515354 detected at very high energies with the MAGIC telescopes"
 Monthly Notices of the Royal Astronomical Society,490,2284; DOI:10.1093/mnras/stz2725

 [10] "Statistics of VHE gamma-Rays in Temporal Association with Radio Giant Pulses from the Crab Pulsar"
 Accepted for publication by Astronomy and Astrophysics; arXiv: 1911.00634

[11] "New hard-TeV extreme blazars detected with the MAGIC telescopes" Accepted for publication in Astrophysical Journal Supplement; arXiv:1911.06680

Kyodou Riyou report December 2019 41

Thank you for your support!

The Observatory for Ground-Based Gamma-Ray Astronomy

the observatory for the state of the state

OSMI

denke damp and Exploring the Universe at the Highest Energies

Thank you for your support!

