東京大学宇宙線研究所「共同利用成果発表会」 2019年12月14日

チベット高原での 高エネルギー宇宙線の研究

塩見昌司(日本大学生産工学部)

For the Tibet AS_Y Collaboration

令和元年度チベット実験関係 共同利用研究採択課題一覧

- 1. チベット高原での高エネルギー宇宙線の研究(継続) (瀧田正人 東京大学宇宙線研究所)
- 2. Knee領域一次宇宙線組成の研究(継続) (片寄祐作 横浜国立大学大学院工学研究院)
- 3. 宇宙線による太陽の影を用いた太陽周辺磁場の時間変動の研究
 (継続)
 (西澤正己 国立情報学研究所情報社会相関研究系)
- 4. チベット空気シャワーアレイによる10TeV宇宙線強度の 恒星時日周変動の観測(継続)
 (宗像一起 信州大学理学部)

研究費: 申請額 577万円 → 配分額 150万円

Tibet-ASの維持・運転及び YAC空気シャワーコア観測装置と 水チェレンコフ型地下ミューオン観測装置の 維持・運転に必要な経費の一部に使用。

旅費: 申請額 985万円 → 配分額 275万円

中国出張海外旅費や宇宙線研での研究打ち合わせに使用。

ご支援、どうもありがとうございます!

• 査読論文

Amenomori et al., PRL, 123/5, 051101(2019)

 ・ 東京大学・横浜国立大学・日本大学・神奈川大学より
 合同プレスリリース

• 学会発表

- ICRC2019(Wisconsin)
- CRA2019(Itary)
- TAUP2019(Toyama)
- AOGS2019(Singapore)
- ISEE太陽圏研究集会2019年2月
- 日本物理学会2019年秋(山形大学)
- 日本物理学会2020年春(名古屋大学)

15件 1件 1件 1件 1件(予定) 4件 3件(予定)

Viewpoint: Highest Energy Astrophysical Photons Detected

Rene A. Ong, Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

July 29, 2019 • Physics 12, 87

PHYSICAL REVIEW LETTERS 123, 051101 (2019)

Editors' Suggestion

Featured in Physics

Received April 4, 2019, accepted June 13, published July 29, 2019 in PRL

First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source

M. Amenomori,¹ Y. W. Bao,² X. J. Bi,³ D. Chen,⁴ T. L. Chen,⁵ W. Y. Chen,³ Xu Chen,^{3,6,†} Y. Chen,² Cirennima,⁵ S. W. Cui,⁷ Danzengluobu,⁵ L. K. Ding,³ J. H. Fang,^{3,6} K. Fang,³ C. F. Feng,⁸ Zhaoyang Feng,³ Z. Y. Feng,⁹ Qi Gao,⁵ Q. B. Gou,³ Y. Q. Guo,³ H. H. He,³ Z. T. He,⁷ K. Hibino,¹⁰ N. Hotta,¹¹ Haibing Hu,⁵ H. B. Hu,³ J. Huang,^{3,§} H. Y. Jia,⁹ L. Jiang,³ H. B. Jin,⁴ F. Kajino,¹² K. Kasahara,¹³ Y. Katayose,¹⁴ C. Kato,¹⁵ S. Kato,¹⁶ K. Kawata,^{16,*} M. Kozai,¹⁷ Labaciren,⁵ G. M. Le,¹⁸ A. F. Li,^{19,8,3} H. J. Li,⁵ W. J. Li,^{3,9} Y. H. Lin,^{3,6} B. Liu,² C. Liu,³ J. S. Liu,³ M. Y. Liu,⁵ Y.-Q. Lou,²⁰ H. Lu,³ X. R. Meng,⁵ H. Mitsui,¹⁴ K. Munakata,¹⁵ Y. Nakamura,³ H. Nanjo,¹ M. Nishizawa,²¹ M. Ohnishi,¹⁶ I. Ohta,²² S. Ozawa,¹³ X. L. Qian,²³ X. B. Qu,²⁴ T. Saito,²⁵ M. Sakata,¹² T. K. Sako,¹⁶ Y. Sengoku,¹⁴ J. Shao,^{3,8} M. Shibata,¹⁴ A. Shiomi,²⁶ H. Sugimoto,²⁷ M. Takita,^{16,‡} Y. H. Tan,³ N. Tateyama,¹⁰ S. Torii,¹³ H. Tsuchiya,²⁸ S. Udo,¹⁰ H. Wang,³ H. R. Wu,³ L. Xue,⁸ K. Yagisawa,¹⁴ Y. Yamamoto,¹² Z. Yang,³ A. F. Yuan,⁵ L. M. Zhai,⁴ H. M. Zhang,³ J. L. Zhang,³ X. Zhang,² X. Y. Zhang,⁸

- 1. チベット高原での高エネルギー宇宙線の研究 全体: ICRC2019(1), CRA2019
 超高エネルギーア線: ICRC2019(6), TAUP2019, 日本物理学会(4),日本天文学会(1)
- 2. Knee領域一次宇宙線組成の研究
 ICRC2019(3),日本物理学会(1)
- 3. 宇宙線による太陽の影を用いた太陽周辺磁場の時間変動の研究
 ICRC2019(1), 日本物理学会(1)
- 4. チベット空気シャワーアレイによる10TeV宇宙線強度の恒星時
 日周変動の観測 → (宗像)
 ICRC2019(3), AOGS2019, 日本物理学会(1)

M. Amenomori¹, Y.W. Bao², X.J. Bi³, D. Chen⁴, T.L. Chen⁵, W. Y. Chen³, Xu Chen^{3,6}, Y. Chen², Cirennima⁵,
S. W. Cui⁷, Danzengluobu⁵, L.K. Ding³, J.H. Fang^{3,6}, K. Fang³, C.F. Feng⁸, Zhaoyang Feng³, Z.Y. Feng⁹, Qi Gao⁵,
Q.B. Gou³, Y.Q. Guo³, H.H. He³, Z.T. He⁷, K. Hibino¹⁰, N. Hotta¹¹, Haibing Hu⁵, H.B. Hu³, J. Huang³, H.Y. Jia⁹,
L. Jiang³, H.B. Jin⁴, F. Kajino¹², K. Kasahara¹³, Y. Katayose¹⁴, C. Kato¹⁵, S. Kato¹⁶, K. Kawata¹⁶, M. Kozai¹⁷,
Labaciren⁵, G.M. Le¹⁸, A.F. Li^{19,8,3}, H.J. Li⁵, W.J. Li^{3,9}, Y.H. Lin^{3,6}, B. Liu², C. Liu³, J.S. Liu³, M.Y. Liu⁵,
Y.-Q. Lou²⁰, H. Lu³, X.R. Meng⁵, H.Mitsui¹⁴, K.Munakata¹⁵, Y. Nakamura³, H. Nanjo¹, M. Nishizawa²¹,
M. Ohnishi¹⁶, I. Ohta²², S. Ozawa¹³, X.L. Qian²³, X.B. Qu²⁴, T.Saito²⁵, M. Sakata¹², T.K. Sako¹⁶, Y. Sengoku¹⁴,
J. Shao^{3,8}, M. Shibata¹⁴, A. Shiomi²⁶, H. Sugimoto²⁷, M. Takita¹⁶, Y. H. Tan³, N. Tateyama¹⁰, S. Torii1³,
H. Tsuchiya²⁸, S. Udo¹⁰, H. Wang³, H.R. Wu³, L. Xue⁸, K. Yagisawa¹⁴, Y. Yamamoto¹², Z. Yang³, A. F. Yuan⁵,
L. M. Zhai⁴, H.M. Zhang³, J.L. Zhang³, X. Zhang², X.Y. Zhang⁸, Y. Zhang³, Yi Zhang³, Ying Zhang³,

弘前大学理工学部
 南京大学
 中国科学院高能物理研究所
 中国科学院国家天文台
 チベット大学
 中国科学院大学
 中国科学院大学
 「初北師範大学
 山東大学
 西南交通大学
 一神奈川大学工学部
 宇都宮大学教育学部
 早稲田大学理工学術院
 早稲田大学理工学術院
 横浜国立大学大学院工学研究院

- 15. 信州大学理学部
- 16. 東京大学宇宙線研究所
- 17. 宇宙航空研究開発機構宇宙科学研究所
- 18. 中国気象局
- 19. 山東農業大学
- 20. 清華大学
- 21. 国立情報学研究所
- 22. 作新学院大学
- 23. 山東管理学院
- 24. 中国石油大学
- 25. 東京都立産業技術高等専門学校
- 26. 日本大学生産工学部
- 27. 湘南工科大学
- 28. 日本原子力研究開発機構

air sho

. a a

→空気シャワー中の二次粒子(主にe^{+/-}, γ)を観測し 一次宇宙線エネルギー、方向を決定

水チェレンコフ型ミューオン観測装置

2014年2月 — 2017年5月 有効観測時間:719日

「かに星雲」ガンマ線空気シャワー候補事象

Amenomori et al., PRL (2019)

S50 により E決定精度が向上 (10-1000 TeV) → ~40%@10 TeV, ~20%@100 TeV

「かに星雲」>10TeVガンマ線放射

First Detection of Sub-PeV γ (5.6 σ)

Amenomori et al., PRL Supplemental Material (2019)

「かに星雲」のエネルギースペクトル

HAWC (3.3 σ >100TeV) との比較

曲線: HEGRA のデータ(Aharonian+, ApJ, 614, 897 (2004)) を基とし た場合の逆コンプトンモデルで期待されるガンマ線頻度

SNR G106.3+2.7 E > 10 TeV

✓ 観測領域は CO放射領域から示唆される分子雲の領域と一致
 ※VERITASの結果と一致
 ✓ スペクトル解析中
 T. K. Sako ICRC2019 #778 ¹⁵

Geminga

E > 10 TeV

✓ 広がった天体 → HAWCの結果と一致
 ✓ スペクトル解析中

Katayose ICRC2019 #770

MGRO J1908+06

E > 10 TeV

✓ 10TeV 以下で VERITAS の結果と一致
 ✓ スペクトル解析中

D. Chen ICRC2019 #648

✓ 優位な信号は見つからず
 ✓ 100 TeV 領域解析中

Hibino ICRC2019 #695

Knee領域一次宇宙線組成の研究

p+Heスペクトル

経過報告

・YAC-II観測実験:[目的]100 TeV以上のエネルギー領域の陽子、ヘリウムスペクトル 2014年度からの観測を継続中

(将来計画)

・YAC-III観測実験:[目的]10¹⁶eV領域での重原子核成分

モンテカルトスタディーの精密化、読み出し回路開発、光センサー試験

本年度の発表・論文等

• ICRC2019 4件

Liuming Zhai, "Primary Cosmic-ray Spectra and Composition in the Energy Range of 50 TeV-10¹⁶ eV with the New Tibet Hybrid Experiment (YAC-II + Tibet-III + MD)"

J. Huang, "Hadronic interactions and EAS muon multiplicity investigated with the new Tibet hybrid experimental muon data"

Y. Zhang, "Test of hadronic interaction models in the forward region from 10 TeV to 1 PeV with the new Tibet EAS core data"

Y. Zhang, "Study of the sharp "knee" phenomenon of cosmic ray spectrum by using newly upgraded Tibet ASy experiment"

宇宙線による**太陽の影**を用いた太陽周辺磁場の 時間変動の研究

Y. Nakamura, ICRC2019 : Can we estimate the variation of the z-component of the interplanetary magnetic field from the sun shadow?

先行研究

太陽の影からコロナ磁場、惑星間空間磁場のモデルの評価が可能

Bzの変動と地磁気嵐

使用したデータ

観測

期間:2000-2009(3月から8月) 天頂角:40度以下 1.25 粒子以上を4台以上で検出

Σρ(粒子数密度の総和)>31.6以上で5分割

Σρ	event数 平均 Rigidity		
31.6~56.2	1.3x10 ⁷	6TV	
56.2~100	7.2x10 ⁶	8TV	
100~215	4.3x10 ⁶	13TV	
215~464	1.4x10 ⁶	20TV	
464.2~	6.3x10⁵	50TV	

MC

磁場モデル

コロナ:

Current Sheet Source Surface (CSSS)モデル IMF: Parker磁場 地磁気:dipole 光球面磁場データ; Kitt Peak 太陽望遠鏡 ※全体の磁場強度 1.5倍

0.5AUでの Bz の変動でデータを分割

DATASET NAME	-2	-1	0	1	2
Bz Condition	Bz<-0.8 [nT]	-0.8 <bz<0.2 [nt]<="" td=""><td>-0.2<bz<0.2 [nt]<="" td=""><td>0.2<bz<0.8 [nt]<="" td=""><td>0.8<bz [nt]<="" td=""></bz></td></bz<0.8></td></bz<0.2></td></bz<0.2>	-0.2 <bz<0.2 [nt]<="" td=""><td>0.2<bz<0.8 [nt]<="" td=""><td>0.8<bz [nt]<="" td=""></bz></td></bz<0.8></td></bz<0.2>	0.2 <bz<0.8 [nt]<="" td=""><td>0.8<bz [nt]<="" td=""></bz></td></bz<0.8>	0.8 <bz [nt]<="" td=""></bz>
平均 Bz [nT]	-1.638 ± 0.024	-0.444 ± 0.004	-0.003 ± 0.002	0.431 ± 0.003	1.524 ± 0.024
総イベント数	3.5×10 ⁶	6.5x10 ⁶	6.9x10 ⁶	6.5x10 ⁶	3.1×10 ⁶

MCに含まれない(突発的な)IMF Bz 変動によって太陽の影の東西のズ レが変化することを示唆

まとめ

1. Tibet AS+MD

- かに星雲から史上最高エネルギーのガンマ線を観測
 (最大エネルギー450TeV、新しいガンマ線観測手法の成果)
- >100TeV領域の天文学を開拓
- SNR G106.3+27, Geminga, MGRO J1908+06からの>10TeV ガンマ線を観測(さらに解析中)

2. YAC

- YAC-II: 2014年から観測を継続中、MDデータも含め解析中
- YAC-III (将来計画)モンテカルロスタディの精密化、読み出し 回路開発、光センサー試験中

3. 太陽の影

- ・影の東西方向のズレとIMFの解析
 → IMFのBz成分と相関あるが、MCとは2.1 σ ずれあり
 → MCに含めなかったIMF Bz変動がズレに影響している可能性 を示唆する初めての結果
- 4. 宇宙線異方性 (宗像、12/13発表参照)